Introductory Control Systems

Exercises \#5 - Block Diagram Reduction

Use the block diagram reduction technique to find the transfer functions associated with each block diagram.
Note: The purpose of practicing block diagram reduction is to become confident in reading and understanding the details of block diagrams. Why is that important? Each diagram provides a visual representation of a set of equations that together are intended to model the behavior of a system. Understanding the details of the block diagram gives the analyst confidence that the block diagram is an accurate representation of the system.

1. The closed-loop system shown in the block diagram has one input signal $(R(s))$ and two output signals $(C(s)$ and $Y(s))$. Find the

Answers: $\frac{Y}{X}(s)=\frac{G_{2} G_{4}}{1+G_{2} G_{4}} \quad \frac{Y}{R}(s)=\frac{G_{1} G_{2} G_{4}}{1+G_{2} G_{4}+G_{1} G_{2} G_{3} H} \quad \frac{C}{R}(s)=\frac{G_{1} G_{2} G_{3}}{1+G_{2} G_{4}+G_{1} G_{2} G_{3} H}$
2. The closed-loop system shown in the block diagram has two input signals $(R(s)$ and $D(s))$ and one output signal $(Y(s))$. Find the transfer functions $\frac{Y}{X}(s), \frac{Y}{R}(s)$, and $\frac{Y}{D}(s)$.

Answers: $\frac{Y}{X}(s)=\frac{G_{3}}{1+G_{3}} \quad \frac{Y}{R}(s)=\frac{G_{1} G_{2} G_{3}}{\left(1+G_{1} G_{2}\right)\left(1+G_{3}\right)+G_{2} G_{3} H} \quad \frac{Y}{D}(s)=\frac{G_{3}\left(1+G_{1} G_{2}\right)}{\left(1+G_{1} G_{2}\right)\left(1+G_{3}\right)+G_{2} G_{3} H}$
3. The closed-loop system shown in the block diagram has two input signals $(R(s)$ and $D(s))$ and one output signal $(Y(s))$. Find the transfer functions $\frac{B}{A}(s), \frac{Y}{R}(s)$, and $\frac{Y}{D}(s)$.

Answers: $\frac{B}{A}(s)=\frac{G_{2}}{1+G_{2} H_{2}}$
$\frac{Y}{R}(s)=\frac{G_{1} G_{2} G_{3}}{1+G_{2} H_{2}+G_{1} G_{2}\left(1+G_{3} H_{1}\right)}$
$\frac{Y}{D}(s)=\frac{G_{3}\left(1+G_{2} H_{2}\right)}{1+G_{2} H_{2}+G_{1} G_{2}\left(1+G_{3} H_{1}\right)}$
4. The closed-loop system shown in the block diagram has one input signal $(R(s))$ and two output signals $(C(s)$ and $Y(s))$. Find the transfer functions $\frac{Y}{D}(s), \frac{C}{D}(s)$, and $\frac{Y}{R}(s)$.

Answers: $\frac{Y}{D}(s)=\frac{G_{3}}{1+G_{3}\left(G_{1}+G_{4}\right)}$
$\frac{C}{D}(s)=\frac{G_{3} G_{4}}{1+G_{3}\left(G_{1}+G_{4}\right)} \quad \frac{Y}{R}(s)=\frac{G_{3}\left(G_{1}+G_{2}\right)}{1+G_{3}\left(G_{1}+G_{4}\right)}$
5. The closed-loop system shown in the block diagram has two input signals $(R(s)$ and $D(s))$ and one output signal $(Y(s))$.Find the transfer functions $\frac{Y}{X}(s), \frac{Y}{R}(s)$, and $\frac{Y}{D}(s)$.

Answers:

$$
\frac{Y}{X}(s)=\frac{G_{3}}{1+G_{3} H} \quad \frac{Y}{R}(s)=\frac{G_{1} G_{2} G_{3}}{1+G_{1} G_{2}+G_{2} G_{3}+G_{3} H+G_{1} G_{2} G_{3} H} \quad \frac{Y}{D}(s)=\frac{G_{3}\left(1+G_{1} G_{2}\right)}{1+G_{1} G_{2}+G_{2} G_{3}+G_{3} H+G_{1} G_{2} G_{3} H}
$$

6. The closed-loop system shown has two input signals, $R(s)$ and $D(s)$, and one output signal $Y(s)$. Find the transfer functions $\frac{B}{A}(s), \frac{Y}{R}(s)$, and $\frac{Y}{D}(s)$.

Answers: $\frac{B}{A}(s)=G_{2}-G_{3}, \frac{Y}{R}(s)=\frac{G_{1} G_{4}\left(G_{2}-G_{3}\right)}{1+G_{1}\left(H+G_{4}\right)\left(G_{2}-G_{3}\right)} \quad \frac{Y}{D}(s)=\frac{G_{4}}{1+G_{1}\left(H+G_{4}\right)\left(G_{2}-G_{3}\right)}$
7. The closed-loop system shown has two input signals $(R(s)$ and $D(s))$ and two output signals $(Y(s)$ and $C(s))$. Find the transfer functions $\frac{Y}{X}(s), \frac{Y}{R}(s)$, and $\frac{C}{D}(s)$.

Answers: $\frac{Y}{X}(s)=\frac{G_{3} G_{4}}{1+H G_{3} G_{4}} \quad \frac{Y}{R}(s)=\frac{G_{3} G_{4}\left(G_{2}-G_{1}\right)}{1+H G_{3} G_{4}+G_{3} G_{5}\left(G_{2}-G_{1}\right)} \quad \frac{C}{D}(s)=\frac{G_{3} G_{5}}{1+H G_{3} G_{4}+G_{3} G_{5}\left(G_{2}-G_{1}\right)}$
8. The closed-loop system shown has two input signals $(R(s)$ and $D(s))$ and one output signal $(Y(s))$. Find the transfer functions $\frac{B}{A}(s), \frac{Y}{R}(s)$, and $\frac{Y}{D}(s)$.

Answers: $\frac{\frac{B}{A}(s)=G_{2}-G_{3}}{\frac{Y}{R}(s)=\frac{G_{1} G_{4}\left(G_{2}-G_{3}\right)}{1+\left(G_{2}-G_{3}\right)\left(G_{1}+G_{4}\right)} \quad \frac{Y}{D}(s)=\frac{G_{4}\left[1+G_{1}\left(G_{2}-G_{3}\right)\right]}{1+\left(G_{2}-G_{3}\right)\left(G_{1}+G_{4}\right)}}$

