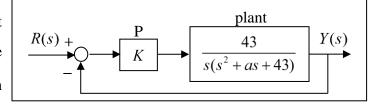

Introductory Control Systems Exercises #7 – Parametric Sensitivity


1. A proportional ("P") controller is used to control a 2^{nd} *order* plant as shown. The system input is R(s) and the system output is Y(s). Find S_a^T and S_K^T the **sensitivities** of the *closed-loop transfer function* $T(s) = \frac{Y}{R}(s)$ to changes in parameters a and K.

Answers: $S_a^T = \frac{-as}{s^2 + as + 3K}$ $S_K^T = \frac{s^2 + as}{s^2 + as + 3K}$

$$S_K^T = \frac{s^2 + as}{s^2 + as + 3K}$$

2. A proportional ("P") controller is used to control a 3^{rd} order plant as shown. The system has one input (R(s)) and one output (Y(s)). Find S_a^T the sensitivity of the closed loop transfer function $T(s) = \frac{Y}{R}(s)$ to changes in the parameter a.

Answer:
$$S_a^T = \frac{-as^2}{s^3 + as^2 + 43s + 43K}$$