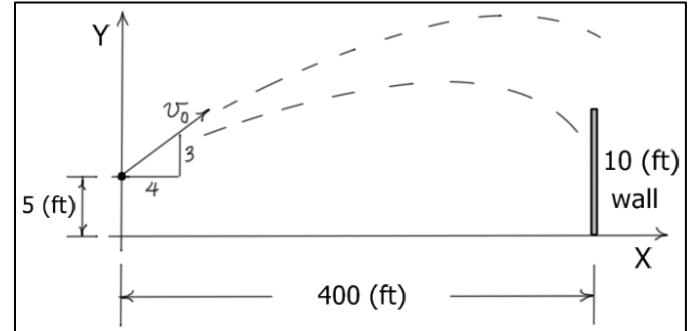


Elementary Dynamics

Exercises #2 – Curvilinear Motion: Rectangular Coordinates

1. A baseball is hit with an *initial speed* $v_0 = 120$ (ft/sec)

at the angle shown. Complete the following: a) Find expressions for $x(t)$ and $y(t)$ the **horizontal** and **vertical** coordinates of the baseball *at any time* t . b) Does the ball hit the wall or go over? c) What *initial speed* v_0 is required to *hit* the **top of the wall** at


$$(x, y) = (400, 10) \text{ (ft)}?$$

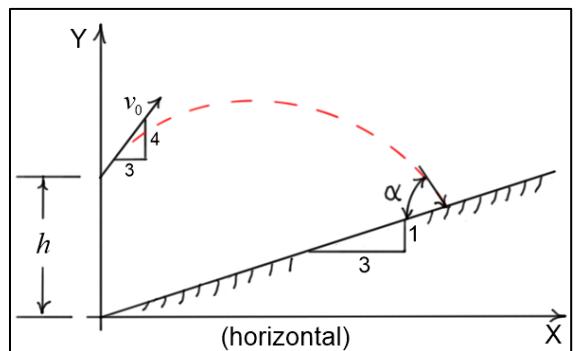
Answers:

a) $x(t) = 96t$ and $y(t) = 5 + 72t - 16.1t^2$

b) time to reach wall, $t^* = 4.16$ (sec); $y(t^*) \approx 25.5$ (ft) > 10 (ft); goes over wall

c) $v_0 \approx 116.808 \approx 117$ (ft/s) (time to reach wall, $t^* \approx 4.28$ (sec))

2. A baseball is thrown from a height of $h = 7$ (m) at an initial


speed $v_0 = 10$ (m/s) as shown. Complete the following:

a) Find $y = y(x)$ the equation of the parabolic path of the ball.

b) Find the x^* and y^* coordinates of the location where the ball

strikes the slope. c) How long does it take for the ball to strike

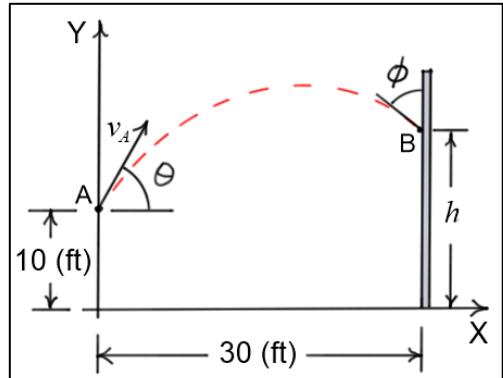
the slope? d) At what angle α does the ball strike the slope?

Answers:

a) $y(x) = 7 + \frac{4}{3}x - \left(\frac{9.81}{72}\right)x^2$ (m); b) $(x^*, y^*) = (11.72, 3.907)$ (m); c) $t = 1.954$ (sec); d) $\alpha = 80.19$ (deg)

3. A ball is thrown from a position 10 feet above the ground with an

initial velocity of $v_A = 40$ (ft/sec) at an angle of $\theta = 60$ (deg) relative


to the horizontal. The wall is 30 feet away from where the ball is

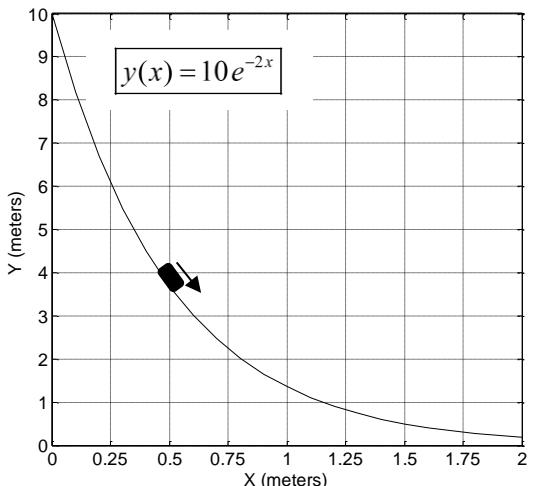
thrown. Find: a) $x(t)$ and $y(t)$ the X and Y coordinates of the ball

as functions of time; b) h the height above the ground where the ball

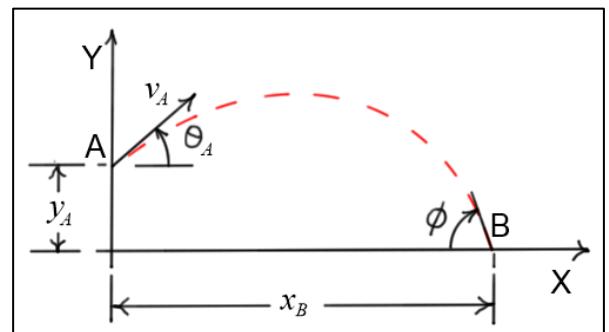
hits the wall; c) ϕ the angle that the ball strikes the wall; d) \dot{v}_B the

rate of change of speed of the ball just before it strikes the wall at B .

Answers:


a) $x(t) = 20t$ (ft) and $y(t) = 10 + 34.64t - 16.1t^2$ (ft); b) $h = 25.7$ (ft); c) $\phi = 55.7$ (deg)

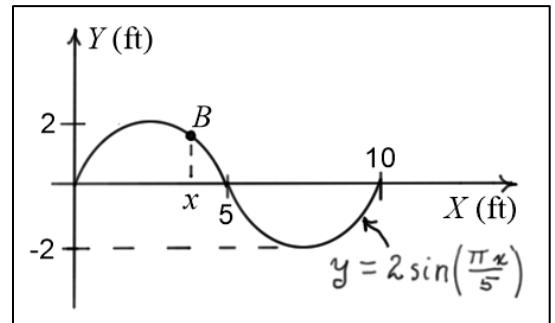
d) $\dot{v}_B = 18.1$ (ft/s²)


4. A sled is traveling down a hill which can be approximated by the function $y(x) = 10e^{-2x}$. When the sled is at $x = 0.5$ (m), its components of velocity and acceleration in the X-direction are $\dot{x} = 3$ (m/s) and $\ddot{x} = 5$ (m/s²). Find: a) $|\dot{y}|$ the magnitude of the velocity of the sled at $x = 0.5$ (m); b) θ the angle of the tangent line relative to the X-axis at $x = 0.5$ (m); c) $|\ddot{a}|$ the magnitude of the acceleration of the sled at $x = 0.5$ (m).

Answers:

a) $|\dot{y}| = 22.3$ (m/s); b) $\theta = -82.3$ (deg); c) $|\ddot{a}| = 95.8$ (m/s²)

5. A **projectile** is fired from a position $y_A = 20$ (ft) **above** the ground and **hits** the ground at $x_B = 200$ (ft). The **time** required for the ball to go from A to B is $\hat{t} = 5$ (sec). Find: a) v_A the **initial velocity** of the projectile; b) θ_A the **angle** at which it is fired; c) ϕ the **angle** at which the projectile **strikes the ground**.



Answers:

a) $v_A = 86.3$ (ft/s); b) $\theta_A = 62.4$ (deg); c) $\phi = 64.7$ (deg)

6. The bead B is moving along a wire which has a sinusoidal shape given by the function $y = 2 \sin\left(\frac{\pi x}{5}\right)$. The component of its velocity in the X direction is a **constant** $v_x = \dot{x} = 3$ (ft/s). Find v_B the magnitude of the velocity of B when $x = 3$ (ft).

Answer: $v_B \approx 3.22$ (ft/s)

