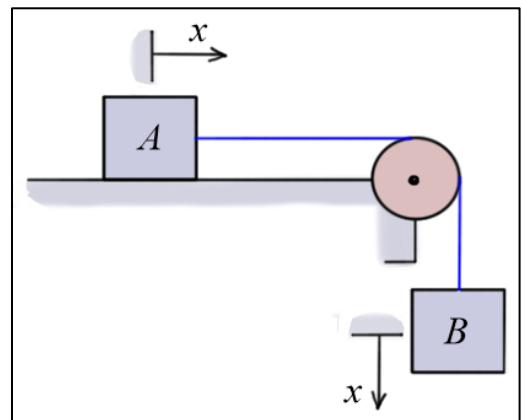


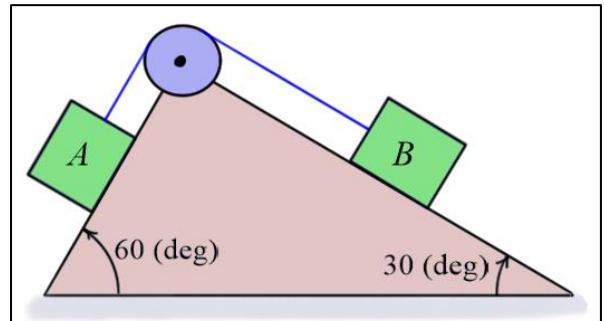
Elementary Dynamics

Exercises #4 – Newton's Laws for Particle Motion


1. Block A is **released** from **rest** on the inclined plane. The mass of A is $m = 10$ (kg), the angle $\theta = 30$ (deg), and the horizontal force $P = 45$ (N). Assuming the **friction** between A and the plane is **negligible**, find: a) N the normal force between A and the plane, b) a the acceleration of A , and c) $v(t = 2)$ the velocity of A two seconds after release.

Answers:

a) $N \approx 107$ (N); b) $a \approx -1.01e_x$ (m/s²); c) $v(t = 2) \approx -2.02e_x$ (m/s) ... motion down the plane


2. The system shown consists of two blocks A and B connected by a **light cable**. Block A weighs $W_A = 100$ (lb). The static and kinetic coefficients of friction between A and the plane are $\mu_s = 0.25$ and $\mu_k = 0.15$. Find: a) $(W_B)_{\min}$ the minimum weight of B required to start the system moving, and b) a the acceleration of the masses and T the tension in the cable given $W_B = 50$ (lb).

Answers:

a) $(W_B)_{\min} = 25$ (lb); b) $a \approx 7.51$ (ft/s²) and $T \approx 38.3$ (lb)

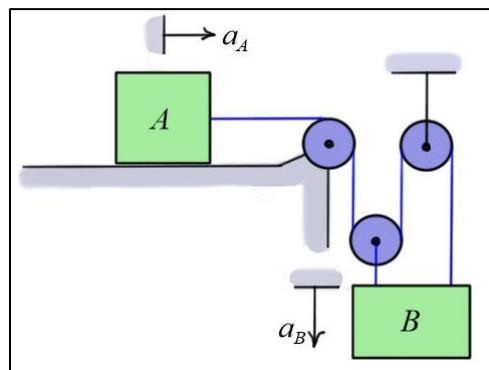
3. The two blocks A and B are connected by a **light cable** and slide on the inclined planes. If each of the blocks weighs $W = 10$ (lb) and the coefficient of kinetic friction between the blocks and the planes is $\mu_k = 0.1$, find a) a the acceleration of the blocks, and b) T the tension in the cable.

Answers:

a) $a \approx 3.69$ (ft/s²); b) $T \approx 7.01$ (lb)

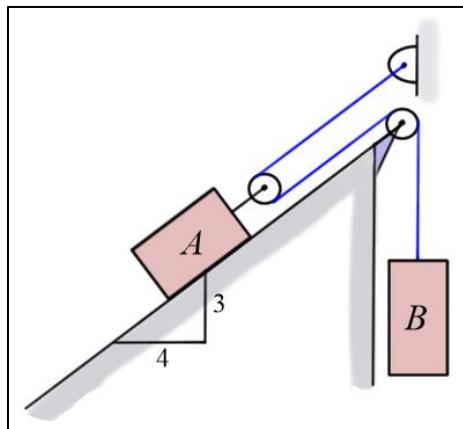
4. The two blocks A and B are connected by a **light** cable and pulley system. The weights of the blocks are $W_A = 50$ (lb) and $W_B = 100$ (lb), and the coefficient of kinetic friction between A and the plane is $\mu_k = 0.3$. The system is **released** from **rest**, and B **moves down**. Find: a) the relationship between the accelerations of A and B , b) a_A the **acceleration** of block A , and c) T the **tension** in the cable.

Answers:


a) $a_A = 2a_B$; b) $a_A \approx 15.0$ (ft/s²); c) $T \approx 38.3$ (lb)

5. The system shown has two blocks A and B connected by a **light** cable and pulley system. The **weight** of A is $W_A = 20$ (lb), the **weight** of B is $W_B = 30$ (lb), and the static and kinetic coefficients of friction are $\mu_s = 0.4$ and $\mu_k = 0.3$. At the instant the system is **released** from **rest**, find: a) the relationship between the accelerations of A and B , b) T the tension in the cable, and c) a_A and a_B the accelerations of A and B .

Answers:


a) $a_A = 3a_B$; b) $T \approx 9.43$ (lb); c) $a_A \approx 5.52$ (ft/s²) and $a_B \approx 1.84$ (ft/s²)

6. The two blocks A and B are connected by a **light** cable and pulley system. The weights of the blocks are $W_A = 60$ (lb) and $W_B = 10$ (lb), and the coefficient of kinetic friction is $\mu_k = 0.2$. When the system is **released** from **rest**, block A moves **down the plane** and block B **moves up**. Find: a) the relationship between the accelerations of A and B , and b) a_A the **acceleration** of block A and T the **tension** in the cable.

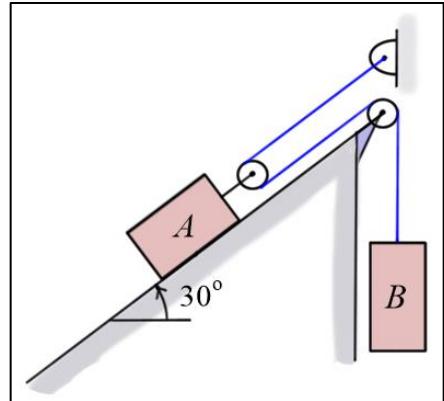
Answers:

a) $a_B = 2a_A$; b) $a_A \approx 2.06$ (ft/s²), $T \approx 11.3$ (lb)

7. The two blocks A and B are connected by a *light* cable and pulley system. The masses of the blocks are $m_A = 60$ (kg) and $m_B = 20$ (kg), and the coefficient of kinetic friction is $\mu_k = 0.2$.

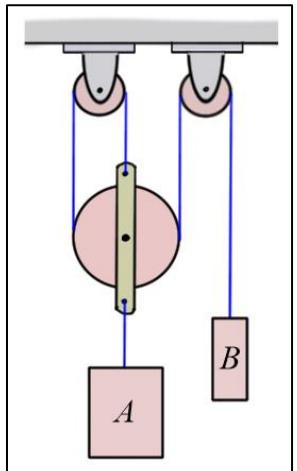
When the system is *released* from *rest*, A moves **down the plane** and B **moves up**. Find: a) the relationship between the accelerations of A and B , and b) a_B the **acceleration** of block B and T the **tension** in the cable.

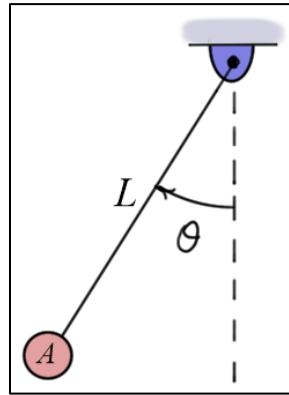
Answers:


a) $a_A = 2a_B$; b) $a_B \approx 0.725$ (m/s²) ; $T \approx 105$ (N)

8. The system shown consists of two blocks A and B connected by a *light* cable and pulley system. The weights of the blocks are $W_A = 50$ (lb) and $W_B = 100$ (lb), and the coefficient of kinetic friction between the block and the plane is $\mu_k = 0.3$. When the system is *released* from *rest*, B **moves down**. Find: a) the relationship between the accelerations of A and B , b) a_A the **acceleration** of block A , and c) T the **tension** in the cable.

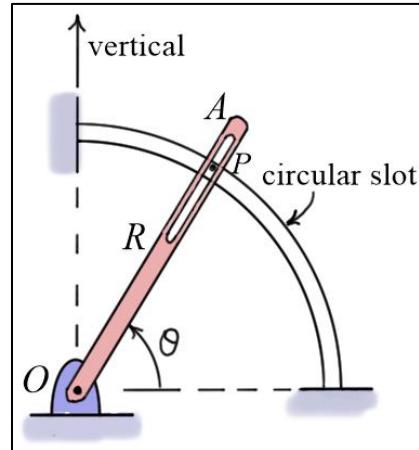
Answers:


a) $a_A = \frac{1}{2}a_B$; b) $a_A \approx 11.6$ (ft/s²); c) $T \approx 28$ (lb)


9. The two blocks A and B are connected by a *light* cable and pulley system. The masses of the blocks are $m_A = 100$ (kg) and $m_B = 25$ (kg). The system is *released* from *rest*, and A **moves down**. Find: a) the relationship between the accelerations of blocks A and B , and b) a_A the **acceleration** of block A , and c) T the **tension** in the cable.

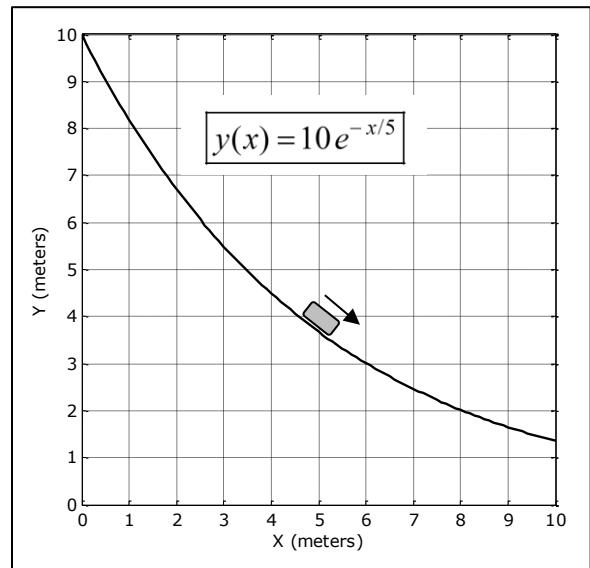
Answers:

a) $a_B = 3a_A$; b) $a_A \approx 0.755$ (m/s²); c) $T \approx 302$ (N)


10. The figure shows a **simple pendulum** which consists of a ball *A* on the end of a **light** cable. The weight of *A* is $W_A = 10$ (lb), and the length of the cable is $L = 5$ (ft). When angle $\theta = 30$ (deg), *A* is observed to be **swinging downward**, and the **tension** in the cable is measured to be $T = 15$ (lb). At this instant, find: a) $\dot{v} = dv/dt$ the rate of change of the speed of *A*, and b) v the speed of *A*.

Answers:

a) $\dot{v} \approx 16.1$ (ft/s²); b) $v \approx 10.1$ (ft/s)

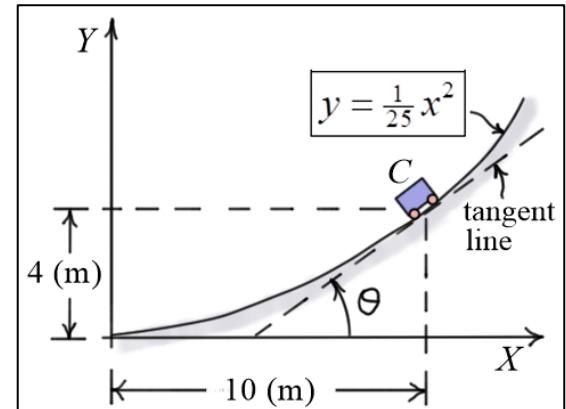

11. The system shown consists of a **fixed circular slot** of radius $R = 0.5$ (m) and a **rotating bar** *OA* in a **vertical plane**. Pin *P* has mass $m = 2$ (kg) and is moved along the circular slot by the motion of *OA*. *P* is slightly smaller than both slots, so it is free to rest against two of the four surfaces of the slots. **Friction** between the pin and the slots is **negligible**. When the bar is at an angle $\theta = 60$ (deg), the time derivatives of θ are known to be $\dot{\theta} = d\theta/dt = 5$ (rad/sec) and $\ddot{\theta} = d^2\theta/dt^2 = -20$ (rad/sec²). At this instant, find: a) N the force that the circular slot exerts on *P*, and b) F the force that arm *OA* exerts on *P*.

Answers:

a) $\underline{N} \approx -8e_r$ (N); b) $\underline{F} \approx -10.2e_\theta$ (N)

12. A **sled** is traveling **down** a hill which can be approximated by the function $y(x) = 10e^{-x/5}$. The **mass** of the sled (and passenger) is $m = 80$ (kg), and the coefficient of kinetic friction is $\mu_k = 0.1$. At the location shown, $x = 5$ (m) and the **speed** of the sled is $v = 10$ (m/s). At this time, find: a) N the normal force exerted on the sled by the hill, and b) \dot{v} the **time rate of change of the speed** of the sled.

Answers:


a) $\underline{N} \approx 1.25e_n$ (kN); b) $\dot{v} \approx 4.25$ (m/s²)

13. The 100 (kg) cart C is travelling up a vertical, parabolic ramp.

The kinetic coefficient of friction between the cart and the ramp is $\mu_k = 0.3$. At the instant shown, the velocity of the cart is $v_C = 5$ (m/s). At this instant, find: a) ρ the radius of curvature, b) N_C the normal force the path exerts on C , and c) \dot{v} the rate of change of the speed of C .

Answers:

a) $\rho \approx 26.25$ (m); b) $N_C \approx 861$ (N); c) $\dot{v} \approx 8.71$ (m/s²)

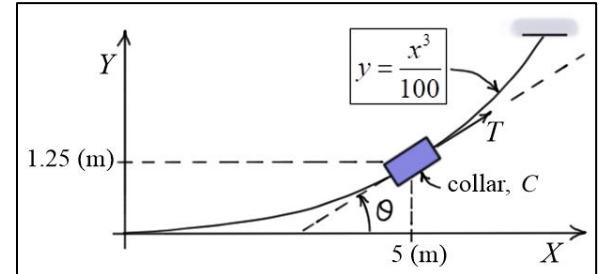
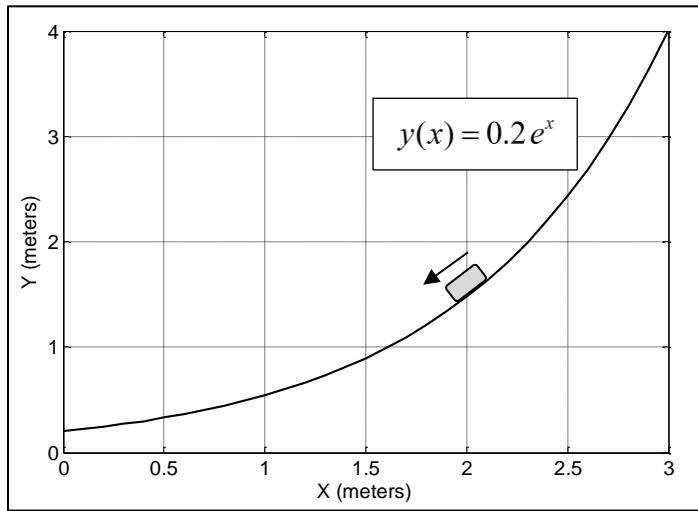
14. An 8 (kg) sack is sliding down a smooth ramp

which can be approximated by the function $y(x) = 0.2 e^x$. At the location shown, $x = 2$ (m) and the **speed** of the sack is $v = 5$ (m/s). At this location, find: a) θ the angle between the vertical (Y axis) and the normal to the curve, b) ρ the radius of curvature, c) N the normal force exerted on the sack by the ramp, and d) \dot{v} the time rate of change of the speed of the sack.

Answers:

a) $\theta \approx 55.9$ (deg); b) $\rho \approx 3.84$ (m); c) $N \approx 96.0$ (N); d) $\dot{v} \approx 8.12$ (m/s²)

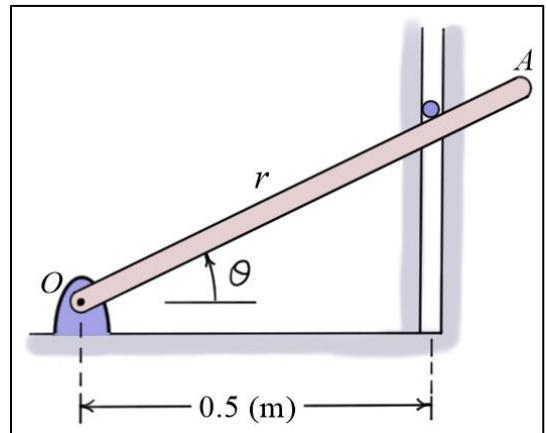
15. The 100 (kg) collar C is driven along a wire path in the



vertical plane by the thrust force T . T is always **tangent** to the path, and the kinetic coefficient of friction between the collar and the wire path is $\mu_k = 0.3$. At the instant shown, the speed of the collar is $v_C = 5$ (m/s) and is **increasing** at a rate

$\dot{v}_C = 20$ (m/s²). At this instant, find:

a) θ the angle between the X axis and the tangent line, b) ρ the radius of curvature, c) N the **normal force** the path exerts on the collar, and d) T the **thrust force** acting on the collar.

Answers:


a) $\theta \approx 36.9$ (deg); b) $\rho \approx 6.51$ (m); c) $N \approx 1170$ (N), d) $T \approx 2940$ (N)

16. The small ball has mass $m = 0.5 \text{ (kg)}$, and it is confined to move along the ***smooth vertical slot*** due to the rotation of arm OA . The arm is rotating at a ***constant rate*** of $\dot{\theta} = 2 \text{ (rad/s)}$. At $\theta = 30 \text{ (deg)}$ find a) a_r and a_θ the ***radial*** and ***transverse*** components of the ***acceleration*** of the ball, and b) F_{OA} and F_s the ***forces*** the ***arm*** OA and the vertical ***slot*** exert on the ball. Assume the ball contacts only one side of the slot at any time and that all surfaces are ***smooth***.

Answers:

a) $\ddot{a} = 1.54 \hat{e}_r + 2.67 \hat{e}_\theta \text{ (m/s}^2\text{)},$ b) $\hat{F}_{OA} = 7.44 \hat{e}_\theta \text{ (N)},$ $\hat{F}_s = 3.72 \hat{i} \text{ (N)}$

