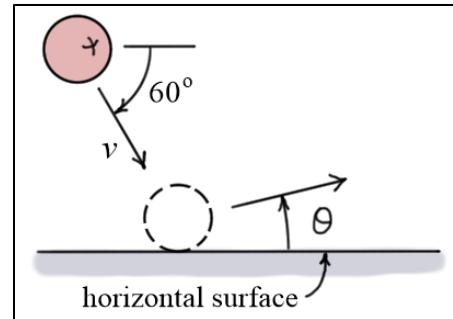

Elementary Dynamics

Exercises #6 – Impulse, Momentum, Impact, and Energy for Particle Motion

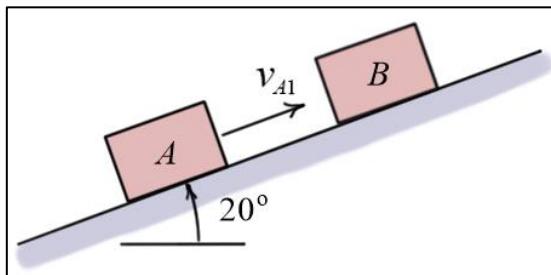
1. The 51 (kg) block A is at rest when the force F is applied. The block is noted to slide up the inclined plane under the action of the F . In the first 2 seconds, F varies linearly from 600 (N) to 800 (N). The coefficient of kinetic friction between the block and plane is $\mu_k = 0.5$. Find: a) I_{total} the total impulse applied to A by all forces over the 2-second interval, and b) v the velocity of the block after 2 seconds.

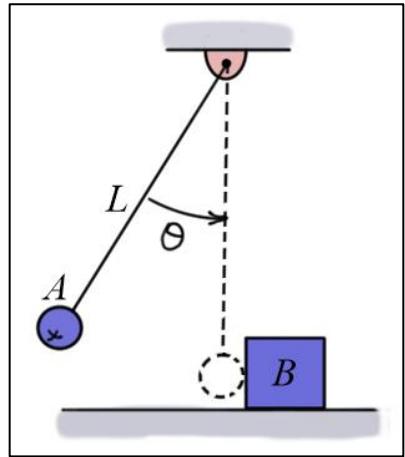
Answers: (positive values are up the incline)


a) $I_{\text{total}} \approx 466 \text{ (N-s)}$; b) $v \approx 9.15 \text{ (m/s)}$

2. A ball of mass $m = 0.1 \text{ (kg)}$ strikes a **fixed horizontal surface** with a **speed** of $v = 20 \text{ (m/sec)}$ at an **angle** of 60° (deg). The **coefficient of restitution** for the impact is $e = 0.5$. Neglecting friction and the size of the ball, find: a) θ the **angle** at which the ball **rebounds** from the surface, and b) h_{max} the **maximum height** the ball attains after leaving the surface. Neglect air resistance.

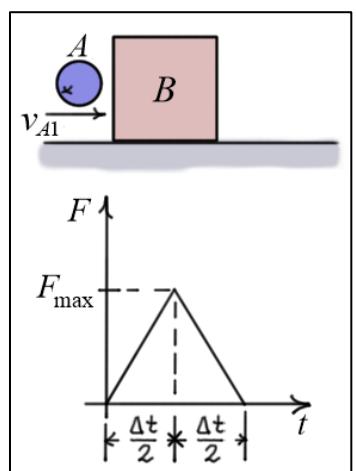
Answers:


a) $\theta \approx 40.9 \text{ (deg)}$; b) $h_{\text{max}} \approx 3.82 \text{ (m)}$


3. At the instant shown, block B is at **rest** on the inclined plane. **Just before** impact, block A is traveling up the inclined plane at a speed of $v_{A1} = 30 \text{ (m/s)}$. The masses of the blocks are $m_A = 1 \text{ (kg)}$ and $m_B = 10 \text{ (kg)}$. Find: a) v_{A2} and v_{B2} the velocities of blocks A and B **just after** the impact, and b) Δt the amount of time it takes block B to stop. The coefficient of restitution is $e = 0.5$, and the coefficient of kinetic friction is $\mu_k = 0.4$. Neglect **non-impulsive** forces during the impact.

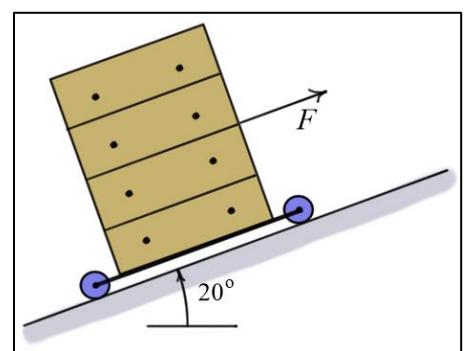
Answers: (positive velocities are up the plane, and negative velocities are down the plane)

a) $v_{A2} \approx -10.9 \text{ (m/s)}$, $v_{B2} \approx 4.09 \text{ (m/s)}$; b) $\Delta t \approx 0.581 \text{ (s)}$


4. The system shown consists of a simple pendulum and a block B on a horizontal surface. Ball A and the block B have masses of $m_A = 2 \text{ (kg)}$ and $m_B = 4 \text{ (kg)}$, and the pendulum has length $L = 2 \text{ (m)}$. As the pendulum swings down, the A strikes B causing it to slide along the surface. The coefficient of restitution between A and B is $e = 0.7$, and the kinetic coefficient of friction between the block and plane is $\mu_k = 0.1$. Given the pendulum is **released from rest** at $\theta = 60 \text{ (deg)}$, find: a) v_{A1} the velocity of the A **just before** it contacts the block, b) v_{A2} and v_{B2} the velocities of A and B **just after** the impact, and c) Δt the time it takes for B to come to rest.

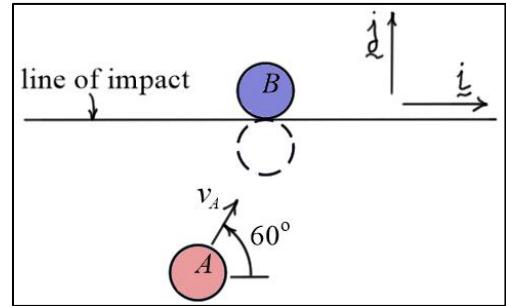
Answers: (velocities positive to the right)

a) $v_{A1} \approx 4.43 \text{ (m/s)}$; b) $v_{A2} \approx -0.591 \text{ (m/s)}$, $v_{B2} \approx 2.51 \text{ (m/s)}$; c) $\Delta t \approx 2.56 \text{ (s)}$


5. Box B is at **rest** on the **horizontal plane** when it is struck by **ball A** causing it to move to the right. The mass of A is $m_A = 1 \text{ (kg)}$, the mass of B is $m_B = 5 \text{ (kg)}$, the velocity of A just before it strikes B is $v_{A1} = 10 \text{ (m/s)}$, the coefficient of restitution is $e = 0.6$, and the coefficient of kinetic friction between B and the floor is $\mu_k = 0.2$. Find: a) v_{B2} the velocity of B just after the impact, and b) t_B the time it takes for B to come to rest after the impact. **Neglect non-impulsive** forces during the impact. Then, assuming the impulsive impact force between A and B has the form shown, find c) F_{\max} the **maximum** value of the impact force. Assume $\Delta t = 0.006 \text{ (sec)}$.

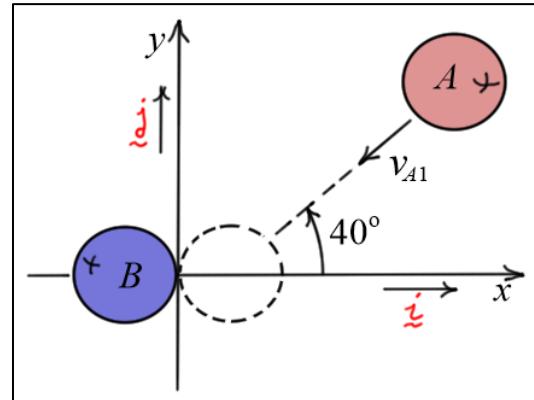
Answers:

a) $v_{B2} \approx 2.67 \text{ (m/s)}$; b) $t_B \approx 1.36 \text{ (s)}$; c) $F_{\max} \approx 4.44 \text{ (kN)}$


6. The 20 (lb) chest is pulled up the incline by the force $F(t) = (5+t) \text{ (lb)}$, where t is in seconds. Assuming the chest is **released from rest**, when F is applied find: a) I_{total} the total impulse applied to the chest over the time interval $0 \leq t \leq 5$ seconds, and b) v the velocity of the chest when $t = 5 \text{ (s)}$. Neglect friction.

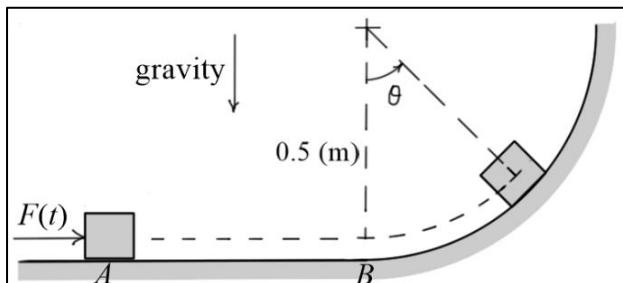
Answers: (positive values indicate impulse and velocity up the plane)

a) $I_{\text{total}} \approx 3.30 \text{ (lb-s)}$; b) $v \approx 5.31 \text{ (ft/s)}$


7. Puck *A* of mass $M = 2$ (kg) slides along a **horizontal, frictionless** surface and collides with puck *B* of mass $m = 1$ (kg) as shown. Just **before impact**, puck *A* has velocity $v_A = 5$ (m/s) at the angle shown, and puck *B* is at **rest**. The pucks collide so that the line tangent to the impact is along the \hat{i} direction as shown. The coefficient of restitution $e = 0.6$. Neglecting friction and the size of the pucks, find the velocities of *A* and *B* **just after impact**.

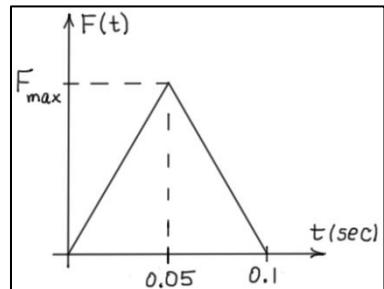
Answers:

$$v_A \approx 2.5 \hat{i} + 2.02 \hat{j} \text{ (m/s)} \quad \text{and} \quad v_B \approx 4.62 \hat{j} \text{ (m/s)}$$


8. The two smooth balls *A* and *B* each of mass $m = 0.2$ (kg) are rolling on a horizontal surface. *B* is at **rest** when *A* strikes it with a velocity $v_{A1} = 1.5$ (m/s) as shown. The coefficient of restitution is $e = 0.85$. **Neglecting friction** and the **size** of the balls, find: a) v_A and v_B the velocities of the balls **just after** impact, and b) ϕ the angle that ball *A* is moving relative to the positive x axis just after the impact.

Answers:

$$\text{a) } v_A \approx -0.0862 \hat{i} - 0.964 \hat{j} \text{ (m/s)} \text{ and } v_B \approx -1.06 \hat{i} \text{ (m/s); b) } \phi \approx -95.1 \text{ (deg)}$$


9. A 10 (kg) block is at **rest** at *A* when it is struck with an impulsive force $F(t)$. **Neglecting friction** and the **size** of the block, find v the velocity of the block at $t = 0.1$ (sec). Assume $F(t)$ varies as shown in the diagram with $F_{\max} = 600$ (N). Does the block stop before reaching the top of the circular track?

Answers:

$$v \approx 3 \text{ (m/s)}$$

Yes, the block reaches a maximum height of 0.459 (m) < 0.5 (m).

