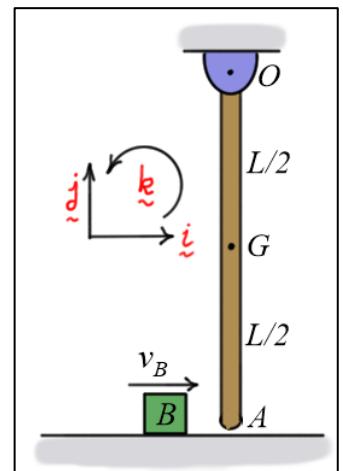
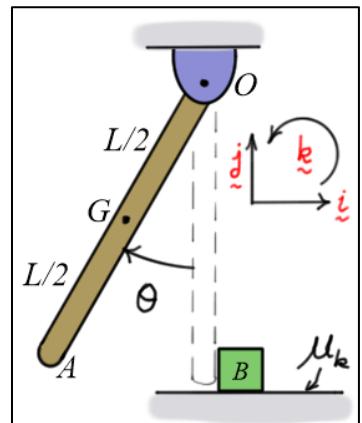

Elementary Dynamics

Exercises #10 – Two-Dimensional, Rigid Body Kinetics: Impulse, Momentum and Energy

1. The long slender bar OA hangs down from the fixed support at O . The bar has mass $m = 8$ (kg) and length $\ell = 2$ (m). OA is initially at rest in the vertical position when the impulsive force $F(t)$ is applied. $F(t)$ acts for 0.03 (sec) and has an average value of 1000 (N). Find ω_{OA} the angular velocity of OA just after the 0.03 (sec) interval.

Answer:

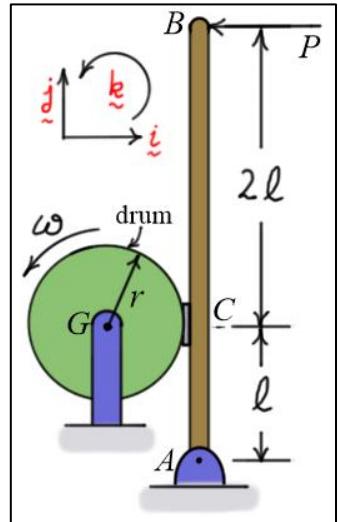

$$\omega_{OA} \approx 2.81 \tilde{k} \text{ (rad/s)}$$


2. The system shown consists of a slender bar OA and a small block B . Bar OA weighs $W_{OA} = 10$ (lb) and has length $L = 3$ (ft). Block B weighs $W_B = 2$ (lb). The bar is initially at rest when the block strikes it moving at a speed of $v_B = 30$ (ft/s). Given the coefficient of restitution is $e = 0.4$ for the collision find: a) $(v_B)_a$ the velocity of B , and b) $(\omega_{OA})_a$ the angular velocity of the bar just after impact.

Answer:

$$\text{a) } (v_B)_a \approx 3.75 \tilde{i} \text{ (ft/s); b) } (\omega_{OA})_a \approx 5.25 \tilde{k} \text{ (rad/s)}$$

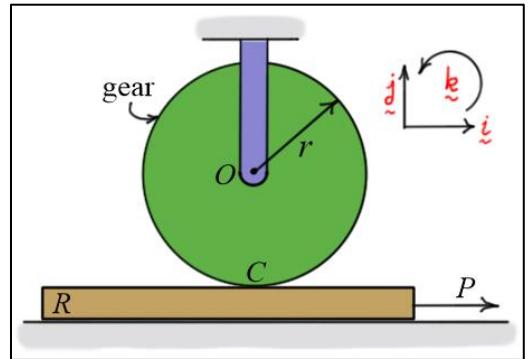
3. The system shown consists of a slender bar OA and a small block B . The bar has weight $W_{OA} = 10$ (lb) and length $L = 3$ (ft). Block B has weight $W_B = 2$ (lb). The bar is released from rest at $\theta = 30^\circ$ and rotates down to strike the block when it is vertical. The block is initially at rest. a) Find ω_{OA} the angular velocity of bar OA just before it strikes B . b) Find $(\omega_{OA})_a$ the angular velocity of OA and $(v_B)_a$ the velocity of B just after the impact given the coefficient of restitution is $e = 0.4$ for the collision. c) Find how long it takes for the block to stop given the kinetic coefficient of friction between the block and the plane is $\mu_k = 0.3$.


Answers:

$$\text{a) } \omega_{OA} \approx 2.08 \tilde{k} \text{ (rad/s); b) } (\omega_{OA})_a \approx 0.987 \tilde{k} \text{ (rad/s) and } (v_B)_a \approx 5.45 \tilde{i} \text{ (ft/s); c) } \Delta t \approx 0.564 \text{ (sec)}$$

4. The drum has mass $m = 50$ (kg), a radius of $r = 0.25$ (m), and a radius of gyration about its mass center G of $k_G = 0.3$ (m). When the brake AB is applied, the drum has an angular velocity of $\omega = 40\hat{k}$ (r/s). The breaking force $P = 100$ (N), the length $\ell = 0.5$ (m), and the coefficient of kinetic friction between the brake and the drum is $\mu_k = 0.5$. Neglect the weight and thickness of the handle. a) Using the principle of work and energy, find N the number of revolutions the drum turns before it stops. b) Using the principle of angular impulse and momentum, find the time Δt required for the drum to stop.

Answers:


a) $N \approx 15.3$ revolutions ; b) $\Delta t \approx 4.8$ (sec)

5. The figure represents a rack and pinion gearing system. Rack R is pulled to the right by the force $P = 200$ (N), causing the gear to rotate about its mass center O . The gear has mass $m = 30$ (kg), radius $r = 0.15$ (m), and radius of gyration $k_o = 0.125$ (m). Rack R has mass $m_R = 20$ (kg) and slides freely on the smooth horizontal surface. The gear rolls without slipping on the rack at C . Using the principle of impulse and momentum, find: a) Δt the time it takes the gear to reach an angular velocity of $20\hat{k}$ (rad/s), and b) f the horizontal force applied to the gear by the rack. The system starts from rest.

Answers:

a) $\Delta t \approx 0.613$ (sec) ; b) $f \approx 102$ (N)

