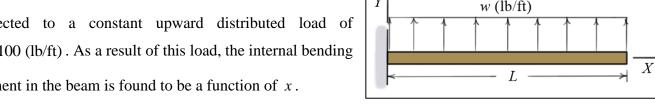
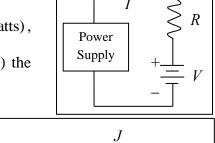
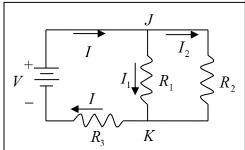

Elementary Engineering Mathematics


Exercises #2 – Quadratic Equations

1. A ball is thrown off a tower at a height of 60 (ft) at a speed of 50 (ft/s) and strikes the hill at some point (x, y) as shown. The X and Y positions of the ball are given as functions of time.

$$x(t) = 30t$$
 (ft) $y(t) = 60 + 40t - 16.1t^2$ (ft)


- (a) By using the quadratic formula and completing the square, find the times when y = 65 (ft); (b) Find y_{max} the maximum height of the ball; (c) By eliminating t from the equations, find y(x);
- (d) Find the equation for the line representing the hill; and
- (e) Find the point where the ball strikes the hill.
- 2. A beam of length L=10 (ft) is cantilevered into a wall. It is subjected to a constant upward distributed load of w = 100 (lb/ft). As a result of this load, the internal bending moment in the beam is found to be a function of x.



$$M(x) = \frac{1}{2}wx^2 - wLx + \frac{1}{2}wL^2 = 50x^2 - 1000x + 5000 \text{ (ft-lb)}$$

- (a) Find the moments at the ends of the beam, x = 0 and x = L; (b) By using the quadratic formula and completing the square, find the X coordinates of the points where M = 1000 (ft-lb); (c) Find the location and value of the maximum bending moment in the beam; and (d) Convert the maximum bending moment to Newton-meters (N-m).
- 3. The power P supplied to a single-loop circuit can be written as follows: $\overline{P = RI^2 + VI}$. Given R = 8 (ohms), V = 16 (volts) and P = 64 (watts), find the current I by (a) factoring, (b) completing the square, and (c) the quadratic formula.
- 4. In the circuit shown, the single equivalent resistance for the three resistors R_1 , R_2 and R_3 is $\left| R_{eq} = \left(\frac{R_1 R_2}{R_1 + R_2} \right) + R_3 \right|$. Given $R_{eq} = 20$ (ohms), $R_2 = R_1 - 5$, and $R_3 = R_1 + 8$, find the values of the resistors R_1 , R_2 and R_3 .

