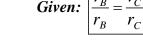

Elementary Engineering Mathematics Homework #3 – Geometry & Trigonometry

- 1. The polar coordinates of an object O are r = 2700 (ft), $\theta = 60$ (deg). Find the Cartesian coordinates x and y of O using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
- 2. The polar coordinates of an object are r = 1500 (ft), $\theta = 210$ (deg). Find the Cartesian coordinates x and y of O using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
- 3. The Cartesian coordinates of an object O are x = 2750 (ft), y = -1500 (ft). Find the polar coordinates r and θ of O. Express θ in both degrees and radians.
- 4. The Cartesian coordinates of an object O are x = -1250 (ft), y = -1500 (ft). Find the polar coordinates r and θ of O. Express θ in both degrees and radians.
- 5. The angle between the line $y(x) = \frac{3}{4}x 12$ and the *X* axis is called θ . Find the $\sin(\theta)$, $\cos(\theta)$, $\tan(\theta)$, and θ . Express θ in both degrees and radians.
- 6. The lengths and angles of a two link planar robot are $\ell_1 = 2.5$ (ft), $\ell_2 = 1.75$ (ft), $\theta_1 = 60$ (deg), and $\theta_2 = 30$ (deg). Find the Cartesian coordinates x and y of B using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
- 7. The lengths and angles of a two link planar robot are $\ell_1 = 2.5$ (ft), $\ell_2 = 1.75$ (ft), $\theta_1 = -30$ (deg), and $\theta_2 = 60$ (deg). Find the Cartesian coordinates x and y of B using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
- 8. The XY coordinates of the end point B and the lengths of the links OA and AB are x = 3.25 (ft), y = 2.4 (ft), $\ell_1 = 2.5$ (ft), and $\ell_2 = 1.75$ (ft). Find: (a) the angles α and β , and (b) the link angles θ_1 and θ_2 for the elbow-down position. Express all angles in both degrees and radians.

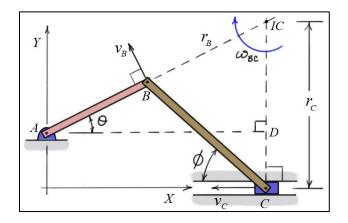

9. For the slider-crank mechanism, the coordinates of points A, B, and C and the velocity of point B are

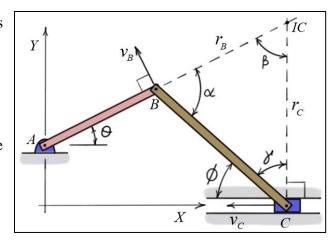
$$A(0,3)$$
 $B(3,7)$ $C(15,0)$ (inches)

$$v_B = 8$$
 (in/s) (in the direction shown)

- a) Using the right triangle ADIC, find the distances r_B and r_C . Express the result in inches.
- b) Find the velocity v_C . Express the result in inches/sec.

Given:
$$\frac{\overline{v_B}}{r_B} = \frac{v_C}{r_C}$$


10. For the slider-crank mechanism, the coordinates of points


$$A(0,3)$$
 $B(4,7)$ $C(14,0)$ (inches)

$$v_B = 10$$
 (in/s) (in the direction shown)

- a) Find the angles α , β , and γ of the non-right triangle BCIC. Express the results in degrees.
- b) Using the law of sines, find the distances $r_{\rm B}$ and $r_{\rm C}$.
- c) Find the velocity v_C .

Given:
$$\frac{v_B}{r_B} = \frac{v_C}{r_C}$$

