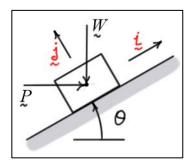
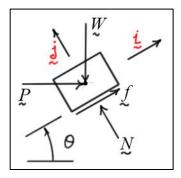

Elementary Engineering Mathematics

Exercises #4 – Two Dimensional (2D) Vectors


- 1. A force \underline{F} has a magnitude $|\underline{F}| = 250$ (lb) and makes an angle $\theta = 135$ (deg) with the X axis. Express the force \underline{F} in terms of the unit vectors \underline{i} and \underline{j} .
- 2. A force \underline{F} has a magnitude $|\underline{F}| = 100$ (lb) and makes an angle $\theta = 55$ (deg) with the X axis. Express the force \underline{F} in terms of the unit vectors \underline{i} and \underline{j} .
- 3. A force $\tilde{F} = -50i 150j$ (lbs). Find the magnitude of \tilde{F} and the angle between it and the i direction. Express the angle in both degrees and radians.
- 4. A force $\underline{F} = 80 \, \underline{i} 100 \, \underline{j}$ (lbs). Find the magnitude of \underline{F} and the angle between it and the \underline{i} direction. Express the angle in both degrees and radians.
- 5. Given the three forces and angles $|\mathcal{E}_1| = 50$ (lbs), $\theta_1 = 20$ (deg), $|\mathcal{E}_2| = 100$ (lbs), $\theta_2 = 30$ (deg), and $|\mathcal{E}_3| = 75$ (lbs), $\theta_3 = 70$ (deg), find (a) the total force \mathcal{E} in terms of the unit vectors \dot{i} and \dot{j} , (b) the magnitude of \mathcal{E} , (c) the angle that \mathcal{E} makes with the \dot{i} direction, and (d) a unit vector in the direction of \mathcal{E} .



- 6. Given a force $\underline{F} = 150 \underline{i} 80 \underline{j}$ (lbs) and a unit vector $\underline{n} = \frac{4}{5} \underline{i} + \frac{3}{5} \underline{j}$, find (a) the angle between the two vectors, (b) $\underline{F}_{\parallel}$ the component of \underline{F} parallel to \underline{n} , and (c) \underline{F}_{\perp} the component of \underline{F} perpendicular to \underline{n} . Express all vectors in terms of unit vectors \underline{i} and \underline{j} .
- 7. Given a force $\tilde{F} = 50\,\dot{i} + 200\,\dot{j}$ (lbs) and a unit vector $n = \frac{\sqrt{3}}{2}\,\dot{i} + \frac{1}{2}\,\dot{j}$, find (a) the angle between the two vectors, (b) the component of \tilde{F} parallel to n, and (c) the component of \tilde{F} perpendicular to n. Express the angle in degrees and radians and all vectors in terms of unit vectors \tilde{i} and \tilde{j} .
- 8. A force $\tilde{F} = 150 \, i 80 \, j$ (lbs) is applied at a point A whose coordinates are (3,2) (ft). Find (a) \tilde{M}_B the moment of \tilde{F} about point B whose coordinates are (4,5) (ft), and (b) the perpendicular distance from B to the line of action of \tilde{F} .
- 9. A force $\tilde{F} = 50 \, i + 200 \, j$ (lbs) is applied at a point A whose coordinates are (2,5) (ft). Find (a) \tilde{M}_B the moment of \tilde{F} about point B whose coordinates are (10,0) (ft), and (b) the perpendicular distance from B to the line of action of \tilde{F} .

Kamman – Elementary Engineering Mathematics – Exercises #4 – Two Dimensional (2D) Vectors – page: 1/2

- 10. A block is resting on an inclined plane under the action of its weight W and the external force P. The plane exerts a friction force f and normal force f on the block holding it in place. Given |W| = 200 (lbs), |P| = 100 (lbs) and $\theta = 60^{\circ}$,
 - a) Express the forces \tilde{W} and \tilde{P} in terms of the unit vectors \tilde{i} and \tilde{j} .
 - b) Find the friction and normal forces f and N so P + W + f + N = 0.

