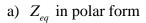
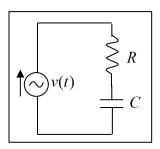

Elementary Engineering Mathematics

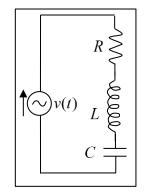
Exercises #5 – Application of Complex Numbers in Electrical Engineering

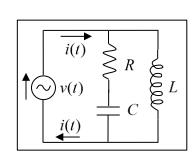
- 1. A voltage $v(t) = 110 \cos \left(120 \pi t + \frac{\pi}{3}\right)$ volts is applied to the RC series circuit with $R = 80 \Omega$ and $C = 50 \mu f$. Given that the total impedance is $Z = Z_R + Z_c$, find
 - a) Z in both rectangular and polar form
 - b) I the complex current in both rectangular and polar form
 - c) i(t) the current as a function of time
- 2. A voltage $v(t) = 110 \cos(120\pi t)$ volts is applied to the RLC series circuit with $R = 75 \Omega$, $C = 40 \mu f$, and L = 300 mh. Given that the total impedance is the sum $Z = Z_R + Z_c + Z_L$, find



- b) I the complex current in both rectangular and polar form
- c) i(t) the current as a function of time


- a) $\left(Z_{R}+Z_{C}\right)$ and Z_{L} in both rectangular and polar form
- a) Z_{eq} the equivalent impedance in polar form
- 4. A voltage $v(t) = 110 \cos \left(120 \pi t + \frac{\pi}{3}\right)$ volts is applied to the RLC parallel circuit with $R = 200 \, (\Omega)$, $C = 25 \, \mu \text{f}$, and $L = 800 \, \text{mh}$. Given that the equivalent impedance is $Z_{eq} = \frac{\left(Z_R + Z_c\right)Z_L}{\left(Z_R + Z_c\right) + Z_L}$, find




- b) I the complex current in polar form
- c) i(t) the total current as a function of time

Impedances for AC circuit elements:
$$Z_R = R$$
, $Z_C = \frac{-j}{\omega C}$, and $Z_L = j\omega L$

Complex form of Ohm's Law: V = IZ

