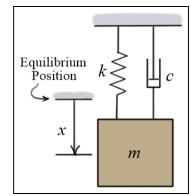
Elementary Engineering Mathematics Exercises #9 – Derivatives

1. For the under-damped spring-mass-damper system shown, the spring stiffness is k=25 (lb/ft), the damping coefficient is c=3 (lb-s/ft), the mass is m=0.25 (slug), the initial position is $x_0=0$ (ft), and the initial velocity is $v_0=15$ (ft/s). Using the table of derivatives and the rules for differentiation, differentiate the displacement function to find (a) $v(t)=\dot{x}(t)$ the velocity, and (b) $a(t)=\ddot{x}(t)$ the acceleration of the mass. Using these results, find (c) a_0 the initial acceleration of the mass, and (d) the time when the displacement first reaches a maximum.

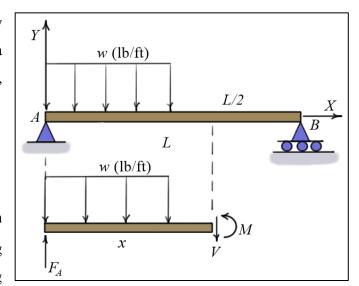


2. The simply supported beam shown has a uniformly distributed load over the left half of the beam. For a beam of length L=10 (ft) and a load w=100 (lb/ft), the internal bending moment is

$$M(x) = 375 x - 50 x^2 \text{ (ft-lb)}$$
 $\left(0 \le x \le \frac{L}{2}\right)$

$$M(x) = 1250 - 125 x \text{ (ft-lb)}$$
 $\left(\frac{L}{2} \le x \le L\right)$

(a) Find V(x) = M'(x) the shearing force as a function of x, (b) Find \hat{x} the location of the maximum bending moment, and (c) Sketch the shearing force and bending moment diagrams. Is the shearing force continuous at x = L/2?



- 3. In the simple circuit shown, the current $i(t) = t^3 e^{-2t}$ (amps), the voltage across the inductor $v(t) = L \frac{di}{dt}$, and L = 125 (mh). a) Find v(t) the voltage across inductor,
 - b) Find the values of the current when the voltage is zero, and c) Use the above information to sketch i(t). Identify the times on the graph where v(t) = 0.
- 4. In the simple circuit shown, $C = 12 \ (\mu f)$ and the applied voltage $v(t) = 22 e^{-30t} \cos(120 \pi t)$ (volts). Find the current i(t). Express the result as an exponential function times a single, phase-shifted cosine function.

