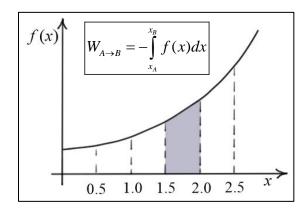
ENGR 1990 Engineering Mathematics Homework #10 – Integrals

1. A hardening spring has the force-displacement function $f(x) = 100 + 10x + x^2$ (lb). The work done by the spring as it is stretched over some displacement interval is the negative of the integral of the force-displacement function over that interval. Estimate the integral and the work done by the spring as it is stretched from x = 0 to x = 2.5 inches by breaking the area into a sequence of trapezoids of width $\Delta x = 0.5$ (in).

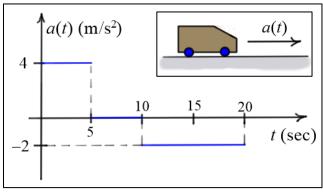
х	f(x)	Interval	$f_{ m avg}$	Δx
0				
0.5		1		0.5
1		2		0.5
1.5		3		0.5
2		4		0.5
2.5		5		0.5
		Σ		



- 2. Using the same spring force-displacement function given in problem (1), find the work done by the spring using anti-derivatives. Calculate the percent error of the estimate found in problem (1).
- 3. A car has the acceleration profile shown, and its initial position and velocity are zero. Given that

$$v(t) = \int a(t)dt$$
 and $s(t) = \int v(t)dt$

find (a) the velocity function v(t), (b) the displacement function s(t), and (c) the total distance traveled by the car for $0 \le t \le 20$ (sec). Sketch the functions.

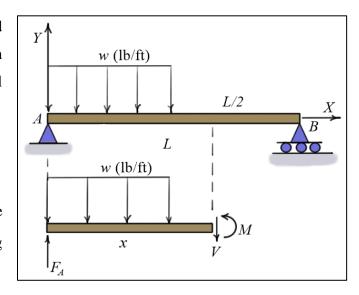


- 4. A ball that is thrown upward has velocity v(t) = 75 32.2t (ft/s). Given that the displacement function of the ball is $y(t) = \int v(t) dt$, find (a) the displacement of the ball from its original position after 3.5 seconds, and (b) the total distance traveled by the ball during the 3.5 second period.
- 5. A ball is thrown upward with an initial velocity of $v_0 = 20$ (m/s) from an initial height of $y_0 = 8$ (m) and has a constant downward acceleration of $a_0 = -9.81$ (m/s²). Given that $v(t) = \int a(t)dt$ and $v(t) = \int v(t)dt$, find (a) the velocity function v(t), and (b) the position function v(t).

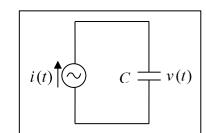
6. The simply supported beam has a uniformly distributed load over the left half of the beam. For a beam of length L=10 (ft) and a load w=100 (lb/ft), the internal shearing force is

$$V(x) = 375 - 100x \text{ (lb)}$$
 $0 \le x \le 5 \text{ (ft)}$
 $V(x) = -125 \text{ (lb)}$ $5 \le x \le 10 \text{ (ft)}$

Given that the internal bending moments at A and B are zero, find $M(x) = \int V(x)dx$ the internal bending moment as a function of x.



7. A current $i(t) = 2e^{-2t}$ (amps) is applied to a capacitor with capacitance C = 0.25 (f). Given that $v(t) = \frac{1}{C} \int i(t) dt$, find the



- a) voltage v(t) assuming v(0) = 0
- b) power, $p(t) = v(t) \cdot i(t)$
- c) total energy, $W(t) = \int_0^t p(t) dt$ (joules)

What is the energy at t = 1, 2, 3, 4 (sec)? What is the limit of the energy as $t \to \infty$?

8. A voltage $v(t) = 10 \sin(120 \pi t)$ (volts) is applied to an inductor with inductance L = 250 (mh). Find the current i(t), given that $i(t) = \frac{1}{L} \int v(t) dt$. Assume i(0) = 0.

