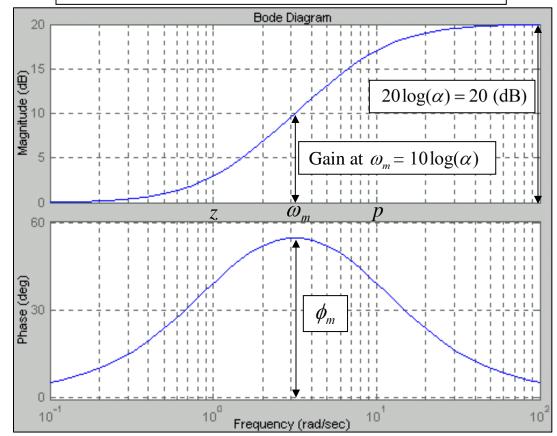
Introductory Motion and Control


Phase-Lead Compensator Design

Reference: Dorf & Bishop, Modern Control Systems, 10th Ed, Prentice-Hall, 2005.

Phase-Lead Compensator (PD type compensator)

- o Transfer function of a *phase-lead* compensator: $G_c(s) = \alpha \left(\frac{s+z}{s+p} \right)$, where |z| < |p|
- The multiplier $\alpha = |p|/|z|$
- As a result, the compensator *amplifies* at frequencies near and above the location of the zero and *increases* the phase of the system near the *pole* and *zero* locations, as well.
- A Bode diagram of the phase-lead compensator $G_c(s) = 10 \left(\frac{s+1}{s+10} \right)$ is shown below.

Bode Diagram of the Example Phase-Lead Compensator

O Here, $\alpha = 10$, the *logarithmic mean frequency* is $\omega_m = \sqrt{|pz|} = 3.16$ (rad/s), the overall magnitude increase is $20\log(\alpha) = 20$ (dB), and the phase shift at the mean frequency is $\phi_m = \sin^{-1}\left(\frac{\alpha-1}{\alpha+1}\right) = +54.9$ (deg).

Phase-Lead Compensator Design Using Bode Diagrams

- o *Find loop gain K* required to satisfy the *steady-state error requirement* (if given).
- \circ Evaluate the *phase margin (PM)* of the *uncompensated system* with the loop gain K to determine if proportional control is sufficient.
- \circ *Find* ϕ_a the *necessary additional phase* required to give the desired phase margin.
- o **Find** α for the **compensator** using the equation $\alpha = \frac{1 + \sin(\phi_a)}{1 \sin(\phi_a)}$.
- Examine the **Bode plot** of the **uncompensated system** (with the loop gain K) to find the frequency where $M = -10\log(\alpha)$. Define this frequency to be ω_m the **logarithmic mean frequency** of the compensator. This will be the new **zero-dB crossover** point.
- Find the pole and zero locations $p = \omega_m \sqrt{\alpha}$ and $z = p/\alpha$, and define the compensator to be $G_c(s) = K\alpha \left(\frac{s+z}{s+p}\right)$.
- \circ *Check* the *phase margin* of the *compensated system* to see if the desired value has been attained. If not, then decide on the additional phase required, and repeat the steps above starting with the calculation of α .
- o Simulate the time-domain performance.

Phase-Lead Compensator Design Using Root Locus Diagrams

- o *Target Regions*: Set *damping ratio* (ζ) and *natural frequency* (ω_n) values for the complex poles (assuming they are all dominant and have no influence from transfer function zeros) to target a *desirable percent overshoot* and *settling time*.
- Examine the uncompensated root locus diagram to see if the pole locations determined above
 can be met with only proportional control.
- \circ *Add* a *zero* and *pole* to GH(s) to move root locus branches into the target region. Use these additions to alter the shape of the root locus diagram in predictable ways. Experience helps.
 - o Can change the locations of real poles of the closed loop system
 - o Separation between the pole and zero will *move all asymptotes to the left*.
 - o The location of any *closed-loop zeros* may cause overshoot problems.
- O Simulate the time-domain performance.