

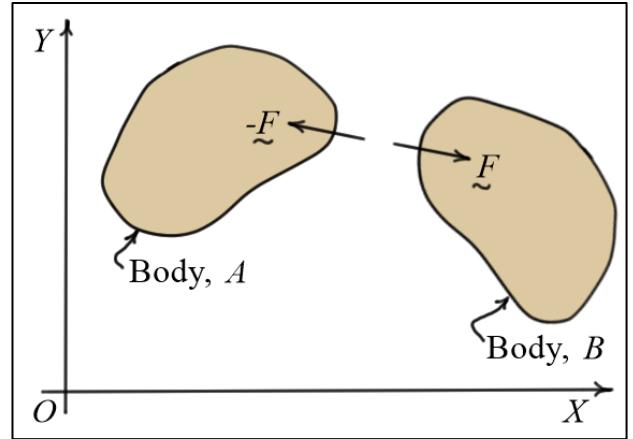
## Elementary Dynamics

### Conservation of Momentum and Impact for Rigid Bodies in Two Dimensions

#### Conservation of Linear Momentum

If the *net impulse* on a *rigid body* is *zero* over the time interval  $t_1 \rightarrow t_2$ , the *linear momentum* of the *body* is *conserved* (i.e. the mass center moves with constant velocity). If the *net impulse* on a *system* of *rigid bodies* is *zero* over the time interval  $t_1 \rightarrow t_2$ , the *linear momentum* of the *system* of bodies is *conserved*.

For example, consider two *colliding bodies*. If the *impulsive* forces  $\tilde{F}$  and  $-\tilde{F}$  act over a *short* time interval  $t_1 \rightarrow t_2$ , the principle of linear impulse and momentum can be applied to each body over that interval. Because the impulses of  $\tilde{F}$  and  $-\tilde{F}$  are *equal* and *opposite*, the *linear momentum* of the *system* of the two bodies is *conserved*. That is,



$$(m_A \mathbf{v}_A)_1 + (m_B \mathbf{v}_B)_1 = (m_A \mathbf{v}_A)_2 + (m_B \mathbf{v}_B)_2$$

#### Conservation of Angular Momentum

If the *net angular impulse* on a *rigid body* is *zero* over the time interval  $t_1 \rightarrow t_2$ , the *angular momentum* of the *body* is *conserved* (i.e. the body rotates with constant angular velocity). If the *net angular impulse* on a *system* of *rigid bodies* is *zero* over the time interval  $t_1 \rightarrow t_2$ , the *angular momentum* of the *system* of bodies is *conserved*. For example, consider again two colliding bodies. The *net angular impulse* of the two *impulsive* forces  $\tilde{F}$  and  $-\tilde{F}$  about the *fixed point*  $O$  is zero, so the *angular momentum* of the *system* about  $O$  is *conserved* during the *impact*. That is,

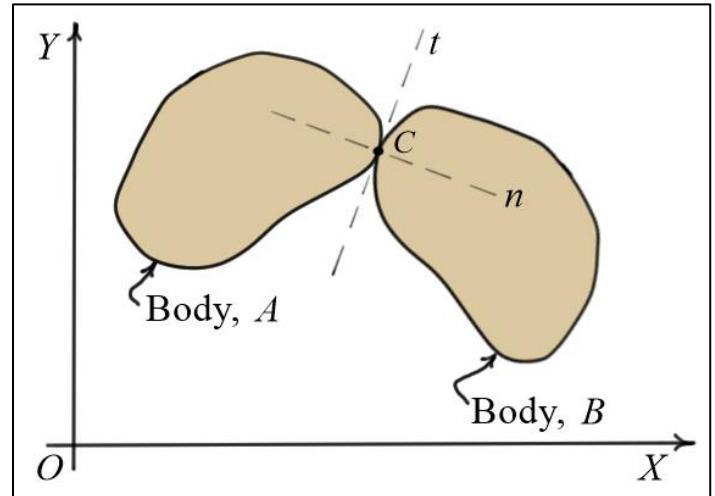
$$(\tilde{H}_O)_{A1} + (\tilde{H}_O)_{B1} = (\tilde{H}_O)_{A2} + (\tilde{H}_O)_{B2}$$

Recall the angular momentum of a body about a fixed-point  $O$  is calculated as follows.

$$\tilde{H}_O = I_G \varphi + (\mathbf{r}_G \times m \mathbf{v}_G)$$

## Coefficient of Restitution

Consider two colliding bodies  $A$  and  $B$ . At the **contact point**  $C$ , the directions  $n$  and  $t$  are **normal** and **tangent** to the colliding surfaces. If the **friction forces** resulting from the impact are **negligible**, it can be shown that the **relative velocities** of the points of contact on the two bodies in the  $n$ -direction can be related through  $e$  the coefficient of restitution as follows:



$$e = \frac{(v_{CB})_{n2} - (v_{CA})_{n2}}{(v_{CA})_{n1} - (v_{CB})_{n1}}$$

Here,  $(v_{CA})_{n1}$  and  $(v_{CB})_{n1}$  represent the **velocities** of the **contact points** on bodies  $A$  and  $B$  in the  $n$ -direction **before impact** (time,  $t_1$ ), and  $(v_{CA})_{n2}$  and  $(v_{CB})_{n2}$  represent the **velocities** of the **contact points** on bodies  $A$  and  $B$  in the  $n$ -direction **after impact** (time,  $t_2$ ).