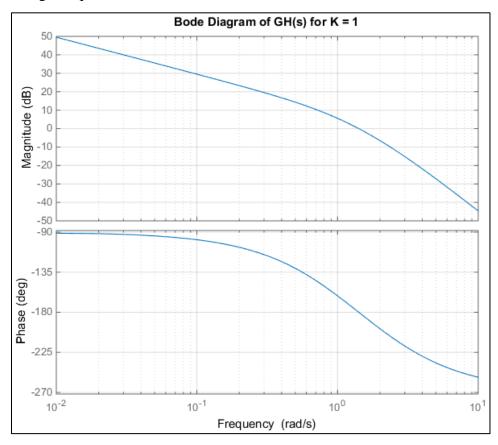
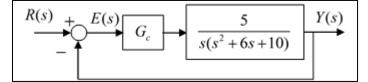

Introductory Motion and Control Exercises #5 Phase-lag Compensator Design Using Bode Diagrams

1. The block diagram shows a third order system to be controlled by a *phase-lag* compensator $G_c(s)$.


a) Assuming $G_c(s) = K$, find the range of K values

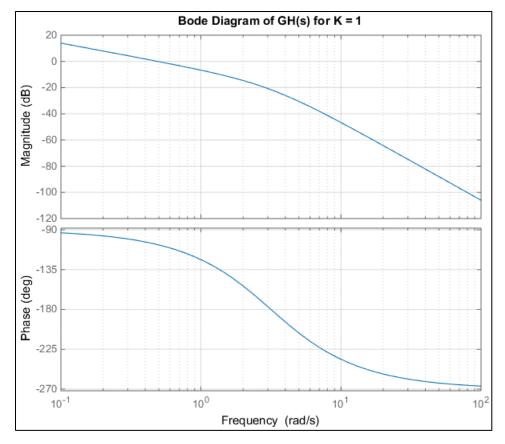
required to make e_{ss} the steady state error due to a unit ramp input less than 0.1. b) Design a phase lag compensator that will allow the closed-loop system to satisfy the error specification of part (a) and have a phase margin of PM = 40 (deg). The Bode diagram for GH(s) with K = 1 is shown below.


Answers:

a)
$$K > 3.33$$
. Using $K = 6$, the current system is unstable. b) $G_c(s) = 6 \times 0.03981 \times \left[\frac{s + 0.06}{s + 0.00239} \right]$

Note: The compensated system has a phase margin of approximately 37.2 (deg). More iteration is required to meet the phase margin requirement.

2. The block diagram shows a third order system to be controlled by a *phase-lag* compensator $G_c(s)$.


a) Assuming $G_c(s) = K$, find the range of K values

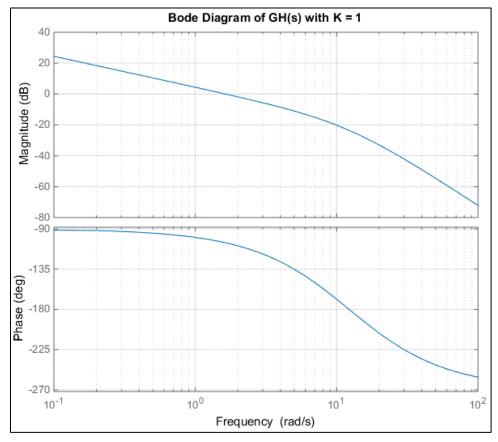
required to make e_{ss} the steady state error due to a unit ramp input less than 0.1. b) Design a phase lag compensator that will allow the closed-loop system to satisfy the error specification of part (a) and have a phase margin of PM = 60 (deg). The Bode diagram for GH(s) with K = 1 is shown below.

Answers:

a)
$$K \ge 20$$
. Using $K = 20$, the current system is unstable. b) $G_c(s) = 20 \times 0.1 \times \left[\frac{s + 0.08}{s + 0.008} \right]$

Note: The compensated system has a phase margin of approximately 54 (deg). More iteration is required to meet the phase margin requirement.

- 3. The block diagram shows a third order system to be controlled by a *phase-lag* compensator $G_c(s)$.
- $\begin{array}{c|c}
 R(s) + & & \\
 \hline
 E(s) & G_c
 \end{array}$ $\begin{array}{c|c}
 \hline
 S(s+10)(s+15)
 \end{array}$
- a) Assuming $G_c(s) = K$, find the range of K values


required to make e_{ss} the steady state error due to a unit ramp input less than or equal to 0.06. b) Design a phase lag compensator that will allow the closed-loop system to satisfy the error specification of part (a) and have a phase margin of PM = 45 (deg). The Bode diagram for GH(s) with K = 1 is shown below.

Answers:

a) $K \ge 10$. Using K = 10, the system has a phase margin of approximately 11 degrees.

b)
$$G_c(s) = 10 \times 0.3162 \times \left[\frac{s + 0.5}{s + 0.1581} \right]$$

Note: The compensated system has a phase margin of approximately 44 (deg). The result is very close to the desired margin.

