

Intermediate Dynamics

Exercises #5

1. The system shown consists of three components, the arms A and B and the end-effector E. The orientation of E relative to a fixed frame is described by the three angles shown. Note that the sequence of rotations θ_1 , θ_2 , and θ_3 is a 2-3-1 body-fixed rotation sequence. Complete the following: a) Derive the transformation matrix [R] that relates the unit vectors $(\underline{e}_1,\underline{e}_2,\underline{e}_3)$ (fixed in E) to the unit vectors $(\underline{N}_1,\underline{N}_2,\underline{N}_3)$ of the fixed frame.

- b) Find the e_i components of e_i the angular velocity of e_i in e_i . Invert the equations from part (b) to solve for e_i , e_i , and e_i in terms of the angular velocity components. d) Find e_i the angular acceleration of e_i relative to the fixed frame. Note: In all parts of this problem, assume the angles e_i , e_i , e_i , and their time-derivatives are all *nonzero*.
- 2. For the yoke-and-spider *universal joint* shown below, the unit vectors fixed in the shaft $B: \left(\varrho_1, \varrho_2, \varrho_3\right)$ are oriented relative to the fixed-frame $R: \left(N_1, N_2, N_3\right)$ using a 1-2-3 body-fixed rotation sequence. The figure shows the configuration where all the angles are *zero*. In its final configuration, the shaft B is aligned with the unit vector n so that $e_1 = C_\phi N_1 + S_\phi N_3$. Using results in the notes for a 1-2-3 body-fixed rotation sequence, complete the following: a) Show that $C_2C_3 = C_\phi$ and $C_3 = C_\phi$ and $C_3 = C_\phi$ and $C_3 = C_\phi$ and $C_3 = C_\phi$ b) Show that $C_3 = C_\phi N_1 + C_0 N_2 + C_0 N_3 + C_0$

