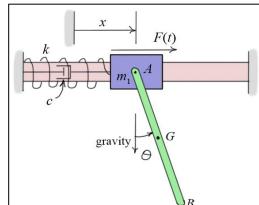
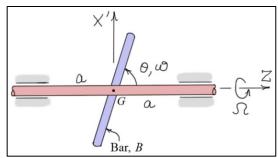

Intermediate Dynamics

Exercises #10

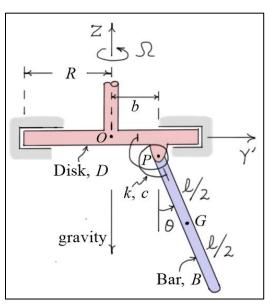

1) Find the equilibrium positions of the system of Exercises #8, problem #1. Use the following data.

$$mg=4$$
 lb
$$m_p g=3$$
 lb
$$\ell=2 \text{ ft} \ k=17.68 \text{ lb/ft} \ k=17.68 \text{ lb/ft}$$



2) Show that $x = \theta = 0$ is an equilibrium position for the system of Exercises #8, problem #2. Linearize the equations of motion about this position and calculate the natural frequencies and mode shapes of the system using the following physical data. Describe the motion of each mode.

$$m_1 g = 10 \text{ lb}$$
 $\ell = 2 \text{ ft}$ $m_2 g = 5 \text{ lb}$ $\ell = 300 \text{ lb/ft}$ (ℓ is the length of AB)



3) Given that $M_{\theta}=0$ and $\dot{\phi}=\Omega={\rm constant}$, find the equilibrium positions for the angle θ for the bar of Exercises #8, problem #3. Then linearize the equation of motion about these positions. Determine the stability of small motions about each of these positions. Find the torque M_{ϕ} required so that $\dot{\phi}=\Omega={\rm constant}$.

4) Given that $M_{\theta}=0$, $\dot{\phi}=\Omega={\rm constant}$, and b=0, show that the equilibrium position for the angle θ for the bar of Exercises #8, problem #4 is approximately $\theta_{eq}\approx 58.7$ (deg). Then linearize the equation of motion about this position and determine the stability of small motions about that position. Find the torque M_{ϕ} required so that $\dot{\phi}=\Omega={\rm constant}$. Use the following physical data:

$$mg = 5 \text{ lb}$$

 $\ell = 2 \text{ ft}$
 $c = 0$
 $k = 10 \text{ ft-lb/rad}$
 $\Omega = 4\pi \text{ rad/s}$

