

## **Intermediate Dynamics**

## **Exercises #11: Lagrange's Equations with Configuration Constraints**

1. In Exercises #8, the equation of motion of the system shown was found using a single generalized coordinate  $\theta$ . Using Lagrange's equations, formulate the equations of motion of the system using the set of *constrained generalized coordinates*  $(x, y, \theta)$ . Then differentiate the constraint equations to put them into the form of second-order, ordinary differential equations. There will be *five* differential equations in all. The equations will contain *five variables*: three generalized coordinates  $(x, y, \theta)$  and two Lagrange multipliers  $(\lambda_1, \lambda_2)$ .



In Exercises #8, the equations of motion of the system shown were found using the generalized coordinates θ and x. Using Lagrange's equations, formulate the equations of motion of the system using the set of constrained generalized coordinates (x,x<sub>G</sub>, y<sub>G</sub>,θ). Here, the coordinates (x<sub>G</sub>, y<sub>G</sub>) represent the X and Y coordinates of G relative to point A. Then differentiate the constraint equations to put them into the form of second-order, ordinary differential equations.



There will be *six differential equations* in all. The equations will contain *six variables*: four generalized coordinates  $(x, x_G, y_G, \theta)$  and two Lagrange multipliers  $(\lambda_1, \lambda_2)$ .