

Elementary Dynamics Example #20: (Work & Energy)

Given: $W_A = 100 \text{ (lb)}$, $W_B = 110 \text{ (lb)}$,
 $\mu_k = 0.3$, $\theta = 20 \text{ (deg)}$

system is **released from rest** and B moves down

Find: velocities of A and B after moving a distance
 $d = 2 \text{ (ft)}$

Solution:

Newton's 2nd Law:

$$A: \boxed{\sum F_y = N - W_A \cos(\theta) = 0} \Rightarrow \boxed{f = \mu_k N = \mu_k W_A \cos(\theta)}$$

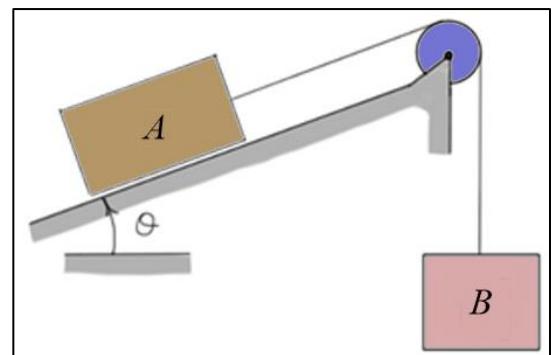
Work & Energy: (applied to the system)

$$\boxed{\underbrace{K_1}_{\text{zero}} + U_{1 \rightarrow 2} = K_2} \text{ with } \boxed{U_{1 \rightarrow 2} = (U_{1 \rightarrow 2})_{\text{friction}} + (U_{1 \rightarrow 2})_{W_A} + (U_{1 \rightarrow 2})_{W_B}}$$

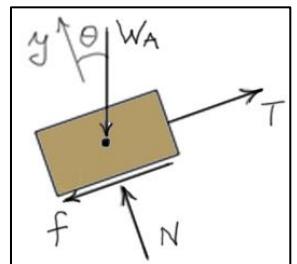
where

$$\left. \begin{array}{l} (U_{1 \rightarrow 2})_{\text{friction}} = -f d = -\mu_k W_A \cos(\theta) d \\ (U_{1 \rightarrow 2})_{W_A} = -W_A d \sin(\theta) = V_1 - V_2 \\ (U_{1 \rightarrow 2})_{W_B} = W_B d = V_1 - V_2 \end{array} \right\} \boxed{U_{1 \rightarrow 2} = 95.2144 \text{ (ft-lb)}}$$

Note that because $U_{1 \rightarrow 2} > 0$, it confirms that B **moves down**.


$$\boxed{K_2 = \frac{1}{2} \left(\frac{W_A}{g} \right) v_A^2 + \frac{1}{2} \left(\frac{W_A}{g} \right) v_A^2 = \frac{1}{2} \left(\frac{W_A + W_B}{g} \right) v^2} \text{ (blocks have the same velocity)}$$

Substituting into the **work & energy equation**


$$\frac{1}{2} \left(\frac{W_A + W_B}{g} \right) v^2 = U_{1 \rightarrow 2} \Rightarrow \boxed{v = \sqrt{\frac{2gU_{1 \rightarrow 2}}{W_A + W_B}} \approx 5.40 \text{ (ft/s)}}$$

Observations:

1. We treated the two blocks and the connecting cable as a **single system**, and consequently had a **single work & energy equation**. The **net** work of the cable tension on the system is **zero**, so it **does not contribute** to this equation. The work done by the cable tension on block A is positive (causing it to move up the plane), and the work it does on block B is of the same magnitude but negative (slowing its downward motion).
2. If we treated the **two blocks separately**, we could write a **work & energy equation for each block**. The cable tension does **nonzero** work on each block, so the cable tension is an **unknown** in these two equations.

Free body diagram

