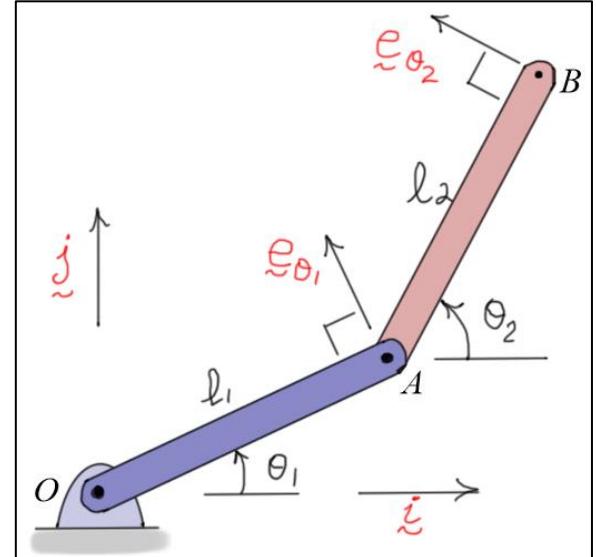


Elementary Dynamics Example #30: (Rigid Body Kinematics – Relative Velocity)

Given: $\ell_1 = \ell_2 = 0.4$ (m)

$\theta_1 = 25$ (deg), $\omega_1 = \dot{\theta}_1 = 10$ (r/s) CCW


$\theta_2 = 60$ (deg), $\omega_2 = \dot{\theta}_2 = 5$ (r/s) CCW

Find: \underline{v}_B the velocity of the endpoint B

Solution:

Using the relative velocity equation for two points fixed on a rigid body,

$$\begin{aligned}
 \underline{v}_B &= \underline{v}_A + \underline{v}_{B/A} = \underline{v}_O + \underline{v}_{A/O} + \underline{v}_{B/A} \\
 &\quad \text{zero} \\
 &= [\omega_{OA} \times \underline{r}_{A/O}] + [\omega_{AB} \times \underline{r}_{B/A}] \\
 &= [\omega_1 \underline{k} \times \ell_1 (\cos(25) \underline{i} + \sin(25) \underline{j})] + [\omega_2 \underline{k} \times \ell_2 (\cos(60) \underline{i} + \sin(60) \underline{j})] \\
 &= \ell_1 \omega_1 \underbrace{(-\sin(25) \underline{i} + \cos(25) \underline{j})}_{\underline{e}_{\theta_1}} + \ell_2 \omega_2 \underbrace{(-\sin(60) \underline{i} + \cos(60) \underline{j})}_{\underline{e}_{\theta_2}} \\
 &= (-1.69047 \underline{i} + 3.62523 \underline{j}) + (-1.73205 \underline{i} + 1 \underline{j}) \\
 \Rightarrow \underline{v}_B &\approx -3.42 \underline{i} + 4.63 \underline{j}
 \end{aligned}$$

Notes:

1. The direction of $\underline{v}_{A/O}$ the velocity of A with respect to O is in the \underline{e}_{θ_1} direction which is **perpendicular** to link OA as shown.
2. The direction of $\underline{v}_{B/A}$ the velocity of B with respect to A is in the \underline{e}_{θ_2} direction which is **perpendicular** to link AB as shown.
3. The directions of each of these relative velocities is determined by the **cross** (or vector) **product**. In each case, the direction is perpendicular to **both** the angular velocity vector and the relative position vector of the two points, O and A for the first link and A and B for the second link.