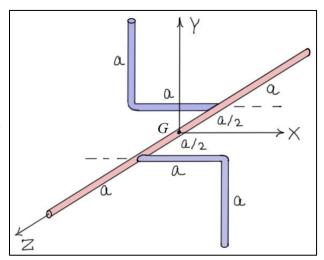
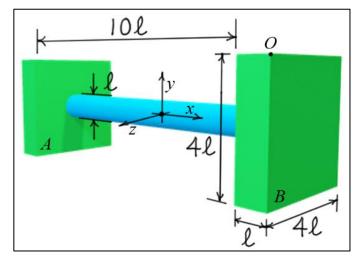
Multibody Dynamics

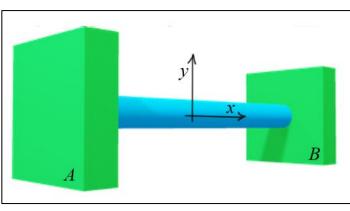
Exercises #5

- 1. The body shown consists of two L-shaped arms welded to a straight rod. The straight segment has length 3a, and each segment of the L-shaped arms has length a. Each segment of length a has mass m. All segments are slender.
 - a) Find the *principal moments* of *inertia* and the *principal directions* for the mass-canter G.
 - b) **Show** that the eigenvector (or modal) matrix found in part (a) diagonalizes the inertia matrix.



2. The figures below show two views of a body with a central cylindrical section and two identical, box-like ends. The central cylindrical section has a diameter of ℓ and length of 10ℓ . The box-like ends have two square sides (length and width equal to 4ℓ) and a depth of ℓ . The cylinder has mass m and the box-like ends each have mass 2m, so the total mass of the composite shape is 5m. Find the *principal moments* of *inertia* and the *principal directions* for the point O.





Note: In each of the problems, the eigenvalue and eigenvector calculations can be done using MATLAB.

Helpful Observations:

- 1. If α is an arbitrary scalar, and if λ is an eigenvalue of matrix A, then $\alpha\lambda$ is an eigenvalue of matrix $\alpha[A]$.
- 2. If α is an arbitrary scalar, and if \underline{x} is an eigenvector of matrix [A], then \underline{x} is also an eigenvector of matrix $\alpha[A]$ corresponding to the eigenvalue $\alpha\lambda$.