Given:

Linearized equations of motion of the double pendulum with adjoining springs and no damping about $\theta_1 = \theta_2 = 0$.

$$\boxed{ [M] { \begin{bmatrix} \Delta \ddot{\theta}_1 \\ \Delta \ddot{\theta}_2 \end{bmatrix}} + [K] { \begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix}} = { \begin{bmatrix} 0 \\ 0 \end{bmatrix}}$$

where

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} \frac{4}{3}m\ell^2 & \frac{1}{2}m\ell^2 \\ \frac{1}{2}m\ell^2 & \frac{1}{3}m\ell^2 \end{bmatrix} \begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} k_1 + k_2 + \frac{3}{2}mg\ell & -k_2 \\ -k_2 & k_2 + \frac{1}{2}mg\ell \end{bmatrix}$$

$$mg = 5 \text{ (lb)} \quad \ell = 2 \text{ (ft)} \quad k_1 = 1000 \text{ (ft-lb/rad)} \quad k_2 = 300 \text{ (ft-lb/rad)}$$

$$mg = 5$$
 (lb) $\ell = 2$ (ft) $k_1 = 1000$ (ft-lb/rad) $k_2 = 300$ (ft-lb/rad)

Find:

Natural frequencies and mode shapes of the system.

Solution:

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} 0.828157 & 0.310559 \\ 0.310559 & 0.207039 \end{bmatrix} \begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} 1315 & -300 \\ -300 & 305 \end{bmatrix}$$
$$\det([K] - \lambda[M]) = \begin{bmatrix} (1315 - 0.828157\lambda) & -(300 + 0.310559\lambda) \\ -(300 + 0.310559\lambda) & (305 - 0.207039\lambda) \end{bmatrix}$$
$$= (0.075014)\lambda^2 - (711.18)\lambda + 311075$$

Characteristic equation: $(0.075014)\lambda^2 - (711.18)\lambda + 311075 = 0$ Roots: $\lambda_{1,2} = \begin{cases} 459.\overline{697} \\ 0.020.02 \end{cases}$

$$\lambda_{1,2} = \begin{cases} 459.697 \\ 9020.93 \end{cases}$$

gravity

Natural Frequencies:
$$\omega_{1,2} = \sqrt{\lambda_{1,2}} = \begin{cases} 21.4405 \text{ (r/s)} \\ 94.9786 \text{ (r/s)} \end{cases} \qquad f_{1,2} = \frac{\omega_{1,2}}{2\pi} = \begin{cases} 3.4124 \text{ (Hz)} \\ 15.1163 \text{ (Hz)} \end{cases}$$

Mode 1: $f_1 = 3.41$ (Hz)

$$\overline{([K] - \lambda_1[M])\{u_1\}} = \begin{bmatrix} 934.299 & -442.763 \\ -442.763 & 209.825 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = \{0\}$$

Setting $u_{11} = 1$ and solving either equation for u_{12} gives $u_{12} = 2.110$ $\Rightarrow \left| \{u_1\} = \begin{cases} 1 \\ 2.110 \end{cases} \right|$

$$] \Rightarrow \boxed{\{u_1\} = \begin{cases} 1\\ 2.110 \end{cases}}$$

Mode 2: $f_2 = 15.1 \text{ (Hz)}$

$$([K] - \lambda_2[M])\{u_2\} = \begin{bmatrix} -6155.75 & -3101.53 \\ -3101.53 & -1562.68 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = \{0\}$$

Setting $u_{21} = 1$ and solving either equation for $u_{22} : \Rightarrow u_{22} = -1.985 \Rightarrow ||\{u_2\}| = -1.985$

$$\boxed{\{u_2\} = \begin{cases} 1\\ -1.985 \end{cases}}$$

