Elementary Engineering Mathematics Application of Complex Numbers in Electric Circuits

Impedance in AC (Alternating Current) Circuits

In AC circuits, the steady-state voltages and currents are nearly *sinusoidal*. They alternate at some *frequency* ω (rad/sec) and have both *magnitude* and *phase*. We can analyze these signals using *complex numbers* and a *complex form* of *Ohm's law*. This form of Ohm's law relates the *sinusoidal signals* to the *impedances* of the circuit elements. The *impedances* are expressed as *complex numbers* and are measured in *ohms* (Ω) . Impedance in an AC circuit is analogous to resistance in a DC (Direct Current) circuit.

Resistor

The impedance of a resistor is its resistance R, $Z_R = R + j0 = Re^{j(0)} = R\angle 0^\circ$. The impedance of a resistor is the same at all frequencies (ω) .

Capacitor

The impedance of a capacitor is $Z_C = -j/\omega C = (1/\omega C)e^{j(-90^\circ)} = (1/\omega C)\angle(-90^\circ)$. Here, ω is the *frequency* of the signals in (rad/s) and C is the *capacitance* measured in *farads* (f). Often C is provided in *micro-farads* (μ f). A micro-farad is 10^{-6} farads.

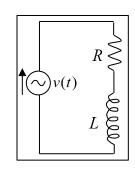
Inductor

The impedance of an inductor is $Z_L = j\omega L = (\omega L)e^{j(90^\circ)} = (\omega L)\angle(90^\circ)$. Here, L is the *inductance* measured in *henrys* (h). Often L is provided in *millihenrys* (mh). A millihenry is 10^{-3} henrys. As before, ω is the *frequency* of the signals in (rad/s).

Example #1

Given:

A voltage $v(t) = 110 \cos(120\pi t)$ is applied to an RL series circuit with R = 100 (ohms) and L = 100 (mh). The impedance of the circuit is $\overline{Z = Z_R + Z_L}$ and the frequency is $\omega = 120\pi$ (rad/s).



Find: Find the complex impedance Z.

Solution:

$$Z = Z_R + Z_L = 100 + j(120\pi)(0.1)$$
 $\Rightarrow Z \approx 100 + j37.7 \text{ (ohms)}$

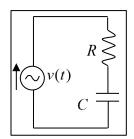
or

$$Z \approx 106.9 e^{j(20.7^{\circ})} \approx 106.9 \angle (20.7^{\circ}) \text{ (ohms)}$$

Example #2

Given:

A voltage $v(t) = 110 \cos(120\pi t)$ is applied to an *RC* series circuit with R = 100 (ohms) and C = 20 (μ f). The impedance of the circuit is $Z = Z_R + Z_C$ and the frequency is $\omega = 120\pi$ (rad/s).



Find: Find the complex impedance Z.

Solution:

$$Z = Z_R + Z_C = 100 - j/(120\pi)(20 \times 10^{-6})$$
 $\Rightarrow Z \approx 100 - j132.6 \text{ (ohms)}$

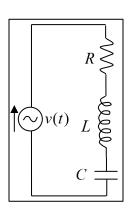
or

$$Z \approx 166.1e^{j(-52.98^{\circ})} \approx 166.1 \angle (-52.98^{\circ}) \text{ (ohms)}$$

Example #3

Given:

A voltage $v(t) = 110 \cos(120\pi t)$ is applied to an *RLC* series circuit with R = 100 (ohms), L = 100 (mh), and C = 20 (μ f). The impedance of the circuit is $Z = Z_R + Z_L + Z_C$ and the frequency is $\omega = 120\pi$ (rad/s).



Find: Find the complex impedance Z.

Solution: (using the results from the examples above)

$$Z = Z_R + Z_L + Z_C \approx 100 + j(37.7 - 132.6)$$
 $Z \approx 100 - j94.9 \text{ (ohms)}$

or

$$Z \approx 137.9e^{j(-43.5^{\circ})} \approx 137.9 \angle (-43.5^{\circ}) \text{ (ohms)}$$

<u>Note</u>: The *impedance* of *capacitors* and *inductors* is a *function of frequency*, whereas the impedance of a resistor is the same at all frequencies.

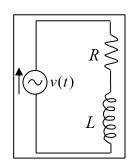
Complex Form of Ohm's Law

To find the currents in the above circuits, we use a complex form of Ohm's law which states that the *voltage drop across an impedance* is equal to the product of the complex current and complex impedance. That is, $\overline{V=IZ}$. Rewriting this equation, we can find the current $\overline{I=V/Z}$.

Example #4

Given:

A voltage $v(t) = 110 \cos(120\pi t)$ is applied to an RL series circuit with R = 100 (ohms) and L = 100 (mh). The impedance of the circuit is $\boxed{Z = Z_R + Z_L}$ and the frequency is $\boxed{\omega = 120\pi \text{ (rad/s)}}$.



Find: Find the complex current I and the time-based current i(t).

Solution:

From previous results, the impedance is $Z = Z_R + Z_L \approx 100 + j37.7$ (ohms)

or

$$Z \approx 106.9e^{j(20.7^{\circ})} \approx 106.9 \angle (20.7^{\circ}) \text{ (ohms)}$$

The given voltage v(t) can be written in complex form as $V = 110e^{j(0^{\circ})} = 110\angle(0^{\circ})$.

So, the complex current is

$$I = V/Z \approx 110e^{j(0^{\circ})}/106.9e^{j(20.7^{\circ})} \approx 1.029e^{j(-20.7^{\circ})}$$
 (amps)

and

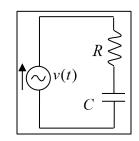
$$i(t) \approx 1.029\cos(120\pi t - 0.3605)$$
 (amps) (argument of cosine function ~ radians)

Note: We use only the *phase angle* of v(t) and not " ωt " when we write the complex form. We must include the " ωt " when we write i(t).

Example #5

Given:

A voltage $v(t) = 110 \cos(120\pi t)$ is applied to an RC series circuit with R = 100 (ohms) and C = 20 (μ f). The impedance of the circuit is $Z = Z_R + Z_C$ and the frequency is $\omega = 120\pi$ (rad/s).



Find: Find the complex current I and the time-based current i(t).

Solution:

From previous results, the impedance is $Z = Z_R + Z_C \approx 100 - j132.6$ (ohms)

or

$$Z \approx 166.1e^{j(-52.98^{\circ})} \approx 166.1 \angle (-52.98^{\circ}) \text{ (ohms)}$$

So, the complex current is

$$I = V/Z \approx 110e^{j(0^{\circ})}/166.1e^{j(-52.98^{\circ})} \approx 0.6623e^{j(52.98^{\circ})}$$
 (amps)

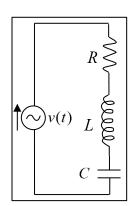
and

$$i(t) \approx 0.6623\cos(120\pi t + 0.9246)$$
 (amps) (argument of cosine function ~ radians)

Example #6

Given:

A voltage $v(t) = 110 \cos(120\pi t)$ is applied to an *RLC* series circuit with R = 100 (ohms), L = 100 (mh), and C = 20 (μ f). The impedance of the circuit is $Z = Z_R + Z_L + Z_C$ and the frequency is $\omega = 120\pi$ (rad/s).



Find: Find the complex current I and the time-based current i(t).

Solution:

From previous results, we have $Z = Z_R + Z_L + Z_C \approx 100 - j94.9$ (ohms)

or

$$Z \approx 137.9e^{j(-43.5^{\circ})} \approx 137.9 \angle (-43.5^{\circ}) \text{ (ohms)}$$

So, the complex current is

$$I = V/Z \approx 110e^{j(0^{\circ})}/137.9e^{j(-43.5^{\circ})} \approx 0.7977e^{j(43.5^{\circ})}$$
 (amps)

and

 $i(t) = 0.7977 \cos(120\pi t + 0.7592)$ (amps) (argument of cosine function ~ radians)

The graph below shows a plot of three cycles of the voltage v(t) and current i(t) for the *RLC* circuit.

