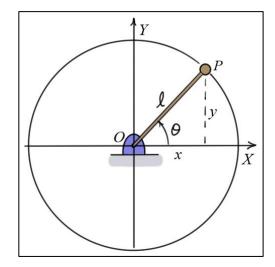
Elementary Engineering Mathematics Sine and Cosine Functions of Time

Arm OP rotates so P moves in a circular path. From trigonometry, the coordinates of P are

$$x = \ell \cos(\theta)$$

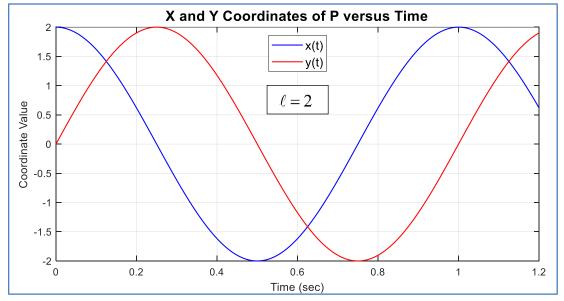
$$y = \ell \sin(\theta)$$

If the bar completes one revolution $(2\pi \text{ radians})$ in one second, then $\theta = 2\pi t$. So, we can also express the coordinates as functions of time.



$$x = \ell \cos(2\pi t)$$

$$y = \ell \sin(2\pi t)$$



Characteristic	Symbol
Amplitude	$A = \ell$
Frequency	$\omega = 2\pi$ (radians/sec)
	$f = \omega/2\pi$ (cycles/sec) -or- (Hertz (Hz))
Period	T = 1/f (seconds/cycle)

Note that the sine and cosine functions (and hence the *X* and *Y* coordinates) can be related by a *phase shift*. The phase shift corresponds to a *shift* in *time*.

$$\left|\sin(2\pi t) = \cos(2\pi t - \pi/2)\right| \qquad \left|\cos(2\pi t) = \sin(2\pi t + \pi/2)\right|$$

In this case, the phase shift of $\pi/2$ radians equates to a shift in time of $\frac{1}{4}$ second. For any given phase shift, the corresponding time shift depends on the frequency ω .