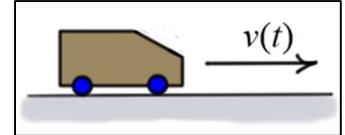


Elementary Engineering Mathematics

Application of Lines in Elementary Dynamics

Example #1

Given: Consider a car moving with **velocity** $v(t)$. For a **constant braking force**, the velocity of the car satisfies the equation:



$$v(t) = v_0 + a_0 t \quad (1)$$

Here, v_0 is the **velocity** of the car at the time the **brakes** are **applied**, a_0 is the **constant acceleration** of the car until it stops, and t is the time. During a **test** of the car's braking system, the following data were measured:

Time, t (s)	Velocity, $v(t)$ (ft/s)	Velocity, $v(t)$ (mi/hr)
2.9	74.5	50.8
7.2	30.2	20.6

Find: a) a_0 the **constant acceleration** of the car; b) v_0 the **initial velocity** of the car; and c) t^* the **time required** for the car to **stop**. Assume a **constant breaking force** is applied.

Solution:

Equation (1) is in the **slope-intercept form** of the equation for a line: $y = mx + b$. Here, the **slope** of the line is $m = a_0$ and the y -intercept is $b = v_0$.

a) The slope a_0 can be **estimated** using the **recorded data**.

$$a_0 = m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{30.2 - 74.5}{7.2 - 2.9} \approx -10.30 \text{ (ft/s}^2\text{)}$$

Note: The symbol “ \approx ” is used here to indicate an **approximate** value.

So, we now have

$$v(t) = -10.30t + v_0$$

b) The y -intercept v_0 can now be found by using the **slope** and **either** of the **two data pairs**.

$$v(t)|_{t=2.9} = 74.5 \approx -(10.30 \times 2.9) + v_0 \Rightarrow v_0 \approx 74.5 + (10.30 \times 2.9) \approx 104.4 \text{ (ft/s)}$$

or

$$v(t)|_{t=7.2} = 30.2 \approx -(10.30 \times 7.2) + v_0 \Rightarrow v_0 \approx 30.2 + (10.30 \times 7.2) \approx 104.4 \text{ (ft/s)}$$

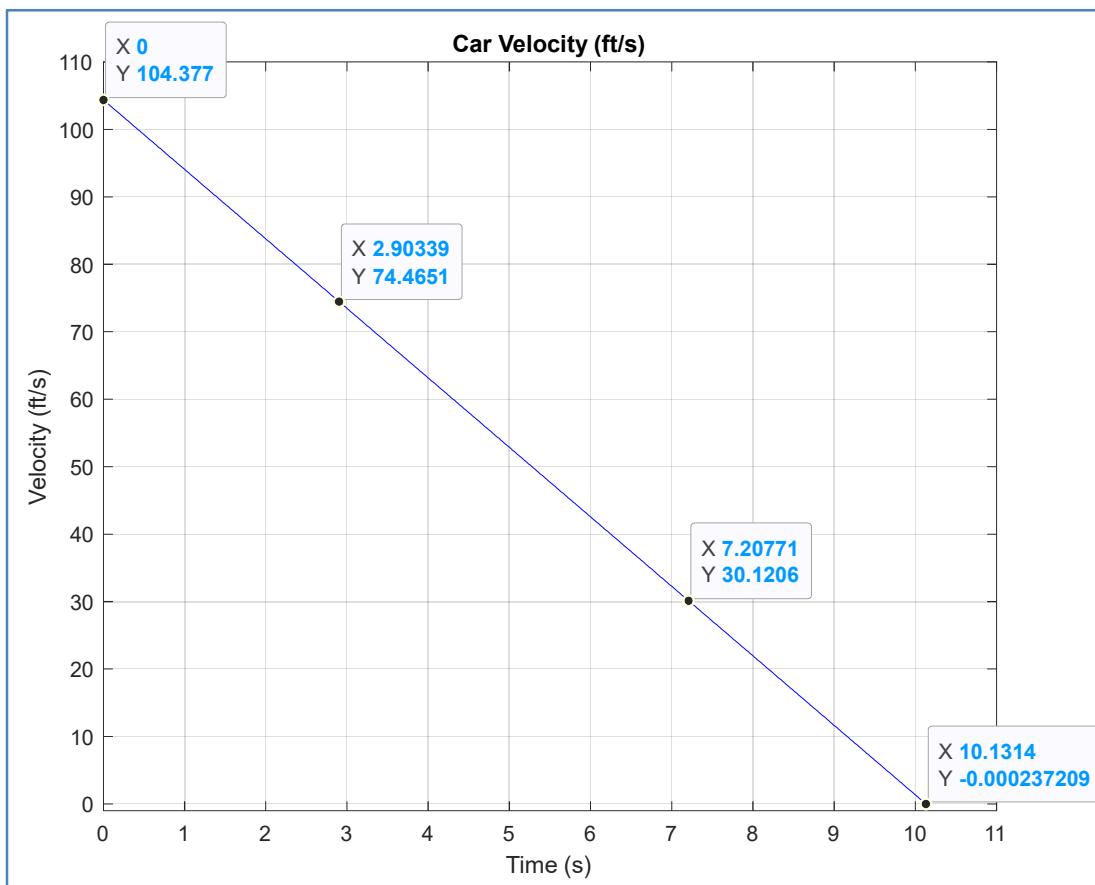
We now have the **completed velocity equation**: $v(t) = -10.30t + 104.4$ (ft/s) (2)

c) Using equation (2), we can find the time t^* required for the car to **stop**.

$$v(t^*) = 0 = 104.4 - (10.30t^*) \Rightarrow t^* \approx 104.4 / 10.30 \approx 10.14 \text{ (s)}$$

Note:

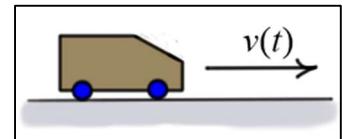
The **stopping time** t^* and the **initial velocity** v_0 are the **x - and y -intercepts** of the line.



Example #2

Given: Again, consider a car moving with **velocity** $v(t)$. As before, for a **constant braking force**, the velocity of the car satisfies the equation:

$$v(t) = v_0 + a_0 t \quad (3)$$



During a **second test** of the car's braking system, the following data were measured:

Time, t (s)	Velocity, $v(t)$ (ft/s)	Acceleration, a (ft/s 2)
4.3	59.7	-10.5

Find: a) v_0 the **initial velocity** of the car; and b) t^* the time required for the car to **stop**.

Assume a **constant breaking force** is applied.

Solution:

a) To find the **initial velocity** v_0 , we can use the **point-slope form** of the equation for a line.

$$\frac{y - y_1}{x - x_1} = m \Rightarrow \frac{v(t) - 59.7}{t - 4.3} = -10.5 \Rightarrow v(t) - 59.7 = -10.5(t - 4.3)$$

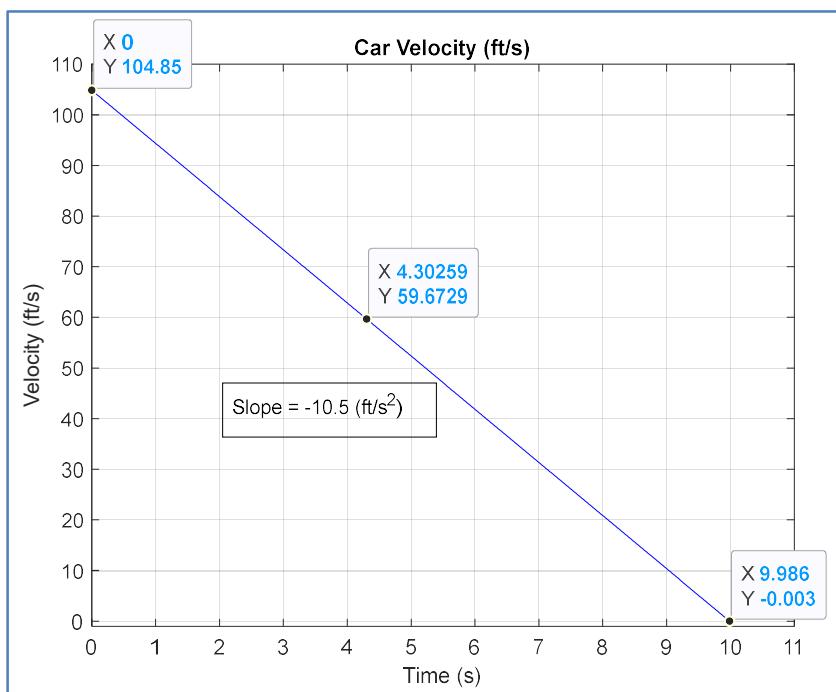
or

$$v(t) = (59.7 + (10.5 \times 4.3)) - 10.5t \Rightarrow v(t) = 104.85 - 10.5t \quad (4)$$

Comparing equations (3) and (4) yields: $v_0 = 104.85$ (ft/s) ≈ 71.5 (mi/hr)

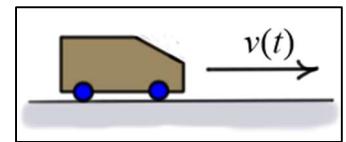
b) Equation (4) can also be used to find the time t^*

$$v(t^*) = 0 = 104.85 - (10.5 t^*) \Rightarrow t^* = 104.85 / 10.5 \approx 9.99 \text{ (s)}$$



Example #3

Given: Now, consider a car that **starts** at **rest**, **accelerates** at a **constant rate** of $a_0 = 14.8 \text{ (ft/s}^2)$ for 6 seconds, and then **decelerates** at a **constant rate** $a_1 = -10.5 \text{ (ft/s}^2)$ until it **stops**. Since the car **starts** from **rest**, during the **constant acceleration phase**, the velocity of the car satisfies the equation



$$v(t) = a_0 t = 14.8 t \quad (5)$$

During the **constant deceleration phase**, the velocity of the car satisfies the equation

$$\frac{v(t) - v(t)|_{t=6}}{t - 6} = a_1 = -10.5 \quad (\text{Point-slope form}) \quad (6)$$

Find: a) the equation for $v(t)$ that applies during the **deceleration** phase, and b) t^* the time when the car stops.

Solution:

a) Using equation (5), we find the velocity of the car at $t = 6 \text{ (sec)}$ to be

$$v(t)|_{t=6} = a_0 t|_{t=6} = (14.8)(6) = 88.8 \text{ (ft/s)}$$

Substituting into the point-slope form in equation (6) and reorganizing terms gives

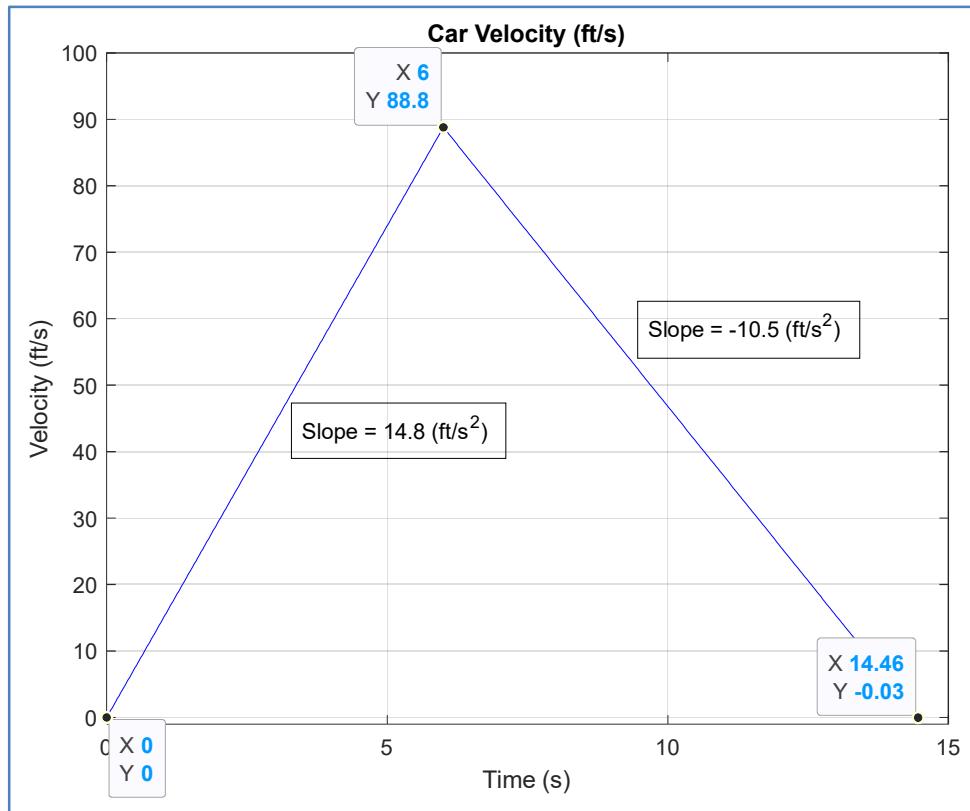
$$\begin{aligned} \frac{v(t) - v(t)|_{t=6}}{t - 6} &= \frac{v(t) - 88.8}{t - 6} = -10.5 \\ \Rightarrow v(t) - 88.8 &= -10.5(t - 6) \\ \Rightarrow v(t) &= (88.8 + (6 \times 10.5)) - 10.5t \end{aligned}$$

or

$$v(t) = 151.8 - 10.5t \text{ (ft/s)}$$

b) To find the time t^* when the car stops, set

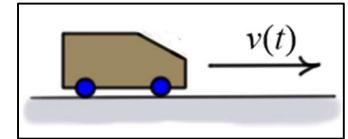
$$v(t^*) = 0 = 151.8 - (10.5t^*) \Rightarrow t^* = 151.8 / 10.5 \approx 14.46 \text{ (s)}$$



Example #4

Given: Now, consider a car that *starts at rest, accelerates* at a *constant rate* of $a_1(\text{m/s}^2)$ for t_1 seconds, and then *decelerates* at a *constant rate* $a_2(\text{m/s}^2)$ until it *stops* at time t_2 . Since the car *starts from rest*, during the *constant acceleration phase*, the *velocity* of the car satisfies the equation

$$v(t) = a_1 t \quad (a_1 > 0) \quad (7)$$



During the *constant deceleration phase*, the velocity of the car satisfies the equation

$$\frac{v(t) - v(t_1)}{t - t_1} = -a_2 \quad (a_2 > 0) \quad (\text{Point-slope form}) \quad (8)$$

Find: a) time t_2 in terms of time t_1 and the acceleration and deceleration rates a_1 and a_2 , and b) $(t_2 - t_1)/t_1$ the ratio of the time durations of deceleration and acceleration.

Solution:

a) Using the **point-slope** form in equation (8), and **substituting** for $v(t_1)$ using equation (7) gives

$$\begin{aligned} \frac{v(t) - v(t)|_{t=t_1}}{t - t_1} &= -a_2 \\ \Rightarrow v(t) - a_1 t_1 &= -a_2 (t - t_1) \\ \Rightarrow v(t) &= (a_1 + a_2) t_1 - a_2 t \quad (\text{m/s}) \end{aligned}$$

Now, using the fact that $v(t_2) = 0$, we can solve for the time t_2 as follows

$$v(t_2) = 0 = (a_1 + a_2) t_1 - a_2 t_2 \Rightarrow t_2 = \left[\frac{a_1 + a_2}{a_2} \right] t_1 \quad (\text{s}) \quad (9)$$

b) Using equation (9), we can solve for the **ratio** of the **time durations** of the **deceleration** and **acceleration** phases.

$$t_2 - t_1 = \left[\frac{a_1 + a_2}{a_2} \right] t_1 - t_1 = \left[\frac{a_1 + a_2}{a_2} - 1 \right] t_1 = \left[\frac{a_1 + a_2}{a_2} - \frac{a_2}{a_2} \right] t_1 = \left[\frac{a_1 + a_2 - a_2}{a_2} \right] t_1 = \left[\frac{a_1}{a_2} \right] t_1$$

or

$$\frac{t_2 - t_1}{t_1} = \frac{a_1}{a_2}$$