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Introductory Control Systems 
Mathematical Models of Physical Systems 

 The responses of some physical systems are relatively simple, and the systems needed to control them can be 

designed using trial-and-error. For more complex system responses, however, a more sophisticated design 

approach is necessary. This approach is based on developing mathematical (numerical) models that describe how 

the process and its associated components respond. These quantitative mathematical models can be based on 

experimental observations or known physical principles. 

 A mathematical model can consist of differential and/or algebraic equations. The solution of these equations 

describes the dynamics of the system, that is, how the system responds to its expected input. A system can consist 

of a single component or of many different types of components – mechanical, electrical, hydraulic, thermal, etc. 

 A mathematical model can be linear or nonlinear depending on the system and the range of operation being 

modeled. If a system is nonlinear, it may be possible to linearize the model before applying linear analysis to the 

system. The extent to which this approach is applicable depends on the strength and type of nonlinearities. 

 Mathematical models can be developed using physical principles. Using 

this approach, the analyst writes the differential and/or algebraic equations 

that are thought to describe the system dynamics. Laplace transforms can then 

used to convert the differential equations into transfer functions. This 

approach is limited by the analyst’s ability to: 1) describe the physics of the 

system (especially for complex systems), and 2) estimate the important 

parameters. As an example of mathematical modeling, the spring-mass-

damper system of Fig. 1 is analyzed below. 

Example: Spring-Mass-Damper System 

Nomenclature 

m   : mass of the block 

k  : spring stiffness 

c  : coefficient of the damper 

( )R t  : external force (input) 

u  : unstretched length of spring 

eqx  : equilibrium position of mass (hanging position) 

x  : position of mass relative to the equilibrium position (output) 

x  : velocity of mass 

x  : acceleration of mass 

  

Fig. 1. Spring-Mass-Damper System 
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 As indicated in the adjacent diagram, the position of the mass relative to the fixed upper support is given by 

the sum of three quantities – 1) u  the unstretched length of the spring, 2) eqx  the static position of the mass, and 

3) x  the position of the mass relative to the static equilibrium position. Measuring a system’s response away from 

an equilibrium position is very common in control system analysis. These positions are often called nominal 

positions (conditions) or set points. 

Static Equilibrium Position 

 Applying the equations of static equilibrium to the adjacent free body diagram, the 

equilibrium position of the system under its own weight can be written as follows. 

 /eqx mg k  (1) 

Equation of Motion about the Equilibrium Position 

 Applying Newton’s second law to the adjacent free body diagram, the differential 

equation of motion can be written as follows. 

 ( )m x c x k x R t     (2) 

Here, the variable x is measured from the equilibrium position. Note that static forces are 

not present in this equation.  

 The solution of this equation describes the forced response of the system. The free 

response of the system is described by solving the equation with ( ) 0R t  . In both cases, 

the initial conditions (0)x  and (0)x  must be specified to find a unique solution. 

System Parameters 

 The system mass m , spring stiffness k , and damping coefficient c  are the system’s parameters. The first two 

are usually easier to measure (or estimate) than the third. For the model to be useful, reasonable estimates of these 

parameters are necessary. 

System Characteristic Equation and Response Type 

 The differential equation of motion represents a mathematical model of the system. It has three types of 

solutions depending on the values of the parameters m , c , and k . The type (or character) of solution is 

determined by the roots of the characteristic equation of the system.  For the spring-mass-damper system, it can 

be shown that the characteristic equation can be written as follows. 

 2 ( / ) ( / ) 0s c m s k m    or 2 2(2 ) 0n ns s     

Here,  

 n

k

m
   is the natural frequency of the system 
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2

c

mk
   is the damping ratio 

In general, the roots of the characteristic equation can be written in the form 

 2
1,2 1n ns        

These roots may be real or complex depending on the value of  . The following table shows the three types of 

possible motion. 

 
 
Case 
 

Type of Roots Type of Motion Form of Solution 

1   Complex conjugates Under-damped  d( ) cos ( )n tx t Ae t      

1   Real, unequal Over-damped 1 2( ) s t s tx t Ae Be   

1   Real, equal Critically damped ( ) n nt tx t Ae B t e       

 
 


