Introductory Control Systems
Mathematical Models of Physical Systems

The responses of some physical systems are relatively simple, and the systems needed to control them can be
designed using trial-and-error. For more complex system responses, however, a more sophisticated design
approach is necessary. This approach is based on developing mathematical (numerical) models that describe how
the process and its associated components respond. These quantitative mathematical models can be based on
experimental observations or known physical principles.

A mathematical model can consist of differential and/or algebraic equations. The solution of these equations
describes the dynamics of the system, that is, how the system responds to its expected input. A system can consist
of a single component or of many different types of components — mechanical, electrical, hydraulic, thermal, etc.

A mathematical model can be linear or nonlinear depending on the system and the range of operation being
modeled. If a system is nonlinear, it may be possible to linearize the model before applying linear analysis to the

system. The extent to which this approach is applicable depends on the strength and type of nonlinearities.

Mathematical models can be developed using physical principles. Using
this approach, the analyst writes the differential and/or algebraic equations
that are thought to describe the system dynamics. Laplace transforms can then b C
used to convert the differential equations into transfer functions. This S—

approach is limited by the analyst’s ability to: 1) describe the physics of the

system (especially for complex systems), and 2) estimate the important

parameters. As an example of mathematical modeling, the spring-mass-

damper system of Fig. 1 is analyzed below. R(¢¥)

Example: Spring-Mass-Damper System Fig. 1. Spring-Mass-Damper System

Nomenclature

m : mass of the block J)

k : spring stiffness j

c : coefficient of the damper

R(t) : external force (input) ;

l, : unstretched length of spring -

X, . equilibrium position of mass (hanging position)

X . position of mass relative to the equilibrium position (output) R(¢)
X : velocity of mass

X : acceleration of mass
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As indicated in the adjacent diagram, the position of the mass relative to the fixed upper support is given by
the sum of three quantities — 1) 7, the unstretched length of the spring, 2) x, the static position of the mass, and
3) x the position of the mass relative to the static equilibrium position. Measuring a system’s response away from

an equilibrium position is very common in control system analysis. These positions are often called nominal

positions (conditions) or set points.

Static Equilibrium Position T k. xeg
Applying the equations of static equilibrium to the adjacent free body diagram, the
equilibrium position of the system under its own weight can be written as follows. -
x,, =mglk (1)
Equation of Motion about the Equilibrium Position lm(g
Applying Newton’s second law to the adjacent free body diagram, the differential }UCT .
equation of motion can be written as follows.

mi + cx + kx=R() 2)

Here, the variable x is measured from the equilibrium position. Note that static forces are

not present in this equation.

R(t)

The solution of this equation describes the forced response of the system. The firee

response of the system is described by solving the equation with R(z) =0 . In both cases,
the initial conditions x(0) and x(0) must be specified to find a unique solution.

System Parameters

The system mass m , spring stiffness &, and damping coefficient c are the system’s parameters. The first two
are usually easier to measure (or estimate) than the third. For the model to be useful, reasonable estimates of these
parameters are necessary.

System Characteristic Equation and Response Type

The differential equation of motion represents a mathematical model of the system. It has three types of
solutions depending on the values of the parameters m, ¢, and k. The type (or character) of solution is
determined by the roots of the characteristic equation of the system. For the spring-mass-damper system, it can

be shown that the characteristic equation can be written as follows.

s +(c/m)s+(k/m)=0 or s+ (2w )s+ @’ =0

Here,

/ k.
o, =,[—]| is the natural frequency of the system
m

n
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In general, the roots of the characteristic equation can be written in the form

is the damping ratio

2
Sl,Zz_é/a)n t w,¢ -1

These roots may be real or complex depending on the value of ¢ . The following table shows the three types of

possible motion.

Case Type of Roots Type of Motion Form of Solution
¢ <1 Complex conjugates Under-damped x(t)=Ae ™" (cos(w,t +¢))
g>1 Real, unequal Over-damped x(t)=Ae"" +Be™'
g = Real, equal Critically damped x(t)=Ae ™ +Bte "™
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