

Elementary Dynamics

Curvilinear Motion – Rectangular Components

General Concepts:

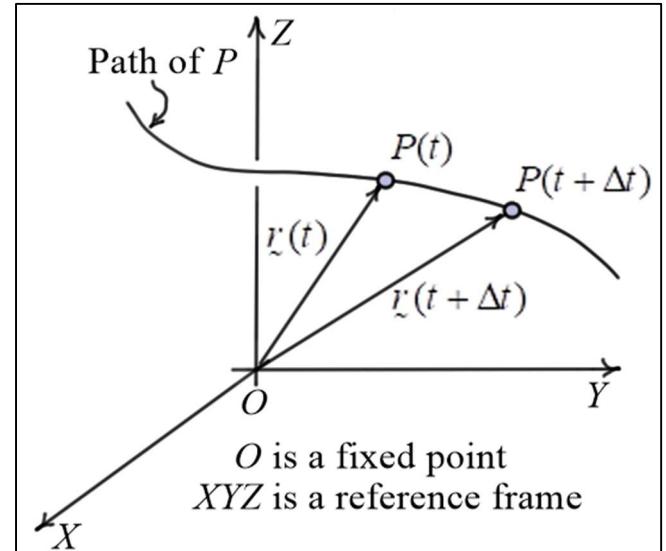
Position, Velocity, and Acceleration

If a particle does not move in a straight line, then its motion is said to be **curvilinear**. Given $\underline{r}(t)$ the position vector of a particle P , the velocity and acceleration of P are defined to be

$$\underline{v} = \frac{d\underline{r}}{dt} \quad \text{and} \quad \underline{a} = \frac{d\underline{v}}{dt}.$$

The **velocity** \underline{v} is **always tangent to the path** of P .

The **acceleration** \underline{a} is generally not tangent to the path.



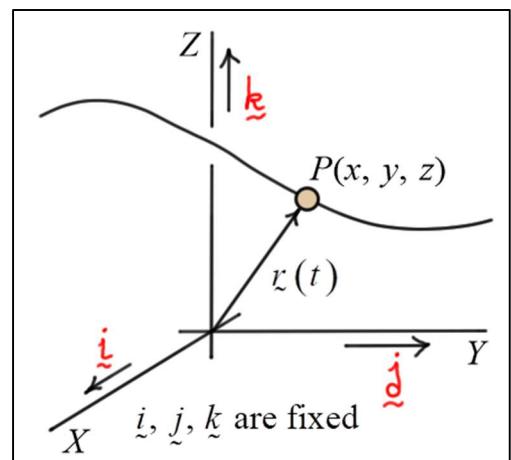
Rectangular Components

If we use rectangular components, then the position, velocity, and acceleration vectors may be written as

$$\underline{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$$

$$\underline{v}(t) = \dot{x}(t)\underline{i} + \dot{y}(t)\underline{j} + \dot{z}(t)\underline{k}$$

$$\underline{a}(t) = \ddot{x}(t)\underline{i} + \ddot{y}(t)\underline{j} + \ddot{z}(t)\underline{k}$$



Note that the methods for straight-line (rectilinear) motion can be applied in each direction.

Example: The Projectile Problem

If we **neglect air resistance**, the motion of a projectile can be analyzed using the equations for constant acceleration. The **horizontal motion** (X -direction) occurs at a **constant velocity**, and the **vertical motion** (Y -direction) occurs at a **constant acceleration**. The equations that apply in the X and Y directions are

X -direction: (constant velocity, v_{x_0})

$$x(t) = x_0 + v_{x_0} t$$

Y -direction: (constant acceleration, $-g$)

$$v_y(t) = v_{y_0} - gt \quad y(t) = y_0 + v_{y_0} t - \frac{1}{2} g t^2 \quad v_y^2 = v_{y_0}^2 - 2g(y - y_0)$$

Derivative of a Rotating Unit Vector in Two Dimensions

In later notes on curvilinear motion, **rotating unit vectors** will be used instead of **fixed unit vectors**. To this end, consider the rotating unit vector $\underline{\underline{e}}$ shown in the diagram. It can be written in terms of the fixed unit vectors \underline{i} and \underline{j} as

$$\underline{\underline{e}} = \cos(\theta) \underline{i} + \sin(\theta) \underline{j}$$

Here, angle θ varies with time as $\underline{\underline{e}}$ rotates. **Differentiating** with respect to time using the chain rule gives

$$\dot{\underline{\underline{e}}} \triangleq \frac{d \underline{\underline{e}}}{dt} = -\dot{\theta} \sin(\theta) \underline{i} + \dot{\theta} \cos(\theta) \underline{j} = \dot{\theta} (-\sin(\theta) \underline{i} + \cos(\theta) \underline{j}) \Rightarrow \boxed{\dot{\underline{\underline{e}}} = \dot{\theta} \underline{\underline{e}}_{\perp}}$$

The unit vector $\underline{\underline{e}}_{\perp}$ is rotated 90 degrees counterclockwise from $\underline{\underline{e}}$. Using the vector cross product, we note that $\underline{\underline{e}}_{\perp}$ can be written as $\underline{\underline{e}}_{\perp} = \underline{k} \times \underline{\underline{e}}$. Using this observation, write

$$\dot{\underline{\underline{e}}} = \dot{\theta} (\underline{k} \times \underline{\underline{e}}) = (\dot{\theta} \underline{k}) \times \underline{\underline{e}} \Rightarrow \boxed{\dot{\underline{\underline{e}}} = \underline{\omega} \times \underline{\underline{e}}}$$

Here, $\underline{\omega} \triangleq \dot{\theta} \underline{k}$ is the **angular velocity** of the rotating unit vector set $(\underline{\underline{e}}, \underline{\underline{e}}_{\perp})$.

