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Introductory Control Systems 
Linearization of System Models 

 The differential or algebraic equation that models the behavior of a system may be linear or 

nonlinear.  If it is nonlinear, it may be possible to linearize the equation about some nominal 

operating condition (or set point). The focus here is on linearization of algebraic models only. 

Linearization of Functions of a Single Variable 

 If the output of a system ( )y  is related to the input of the system ( )x  with a nonlinear algebraic 

function ( )y f x , an approximate linear model of the system behavior can be developed using 

a Taylor series. First, identify a set point (nominal condition), and then expand ( )f x  in a Taylor 

series around that point. Referring to the set point as an equilibrium position eqx , write 
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Here x  represents an excursion or deviation from the equilibrium position (set point). If the 

excursions are small, then the approximation as stated in the second equation can be used. In this 

latter case, write 
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Here, 
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This is a linear relationship between changes in f and changes in x. 

Note: It is up to the analyst to determine the range of x  over which the linear model is 

acceptably accurate. This range could be quite large for mildly nonlinear functions, but it could 

be quite small for strongly nonlinear functions. 
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Linearization of Functions of Many Variables 

 Given a nonlinear function  1 2( , , , )ny f x x x f x 


, expand ( )f x


 in a Taylor series around 

the equilibrium position, say  1 2( ) ,( ) , ,( )eq eq eq n eqx x x x 

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Here the vector  1 2, , , nx x x x    


 represents an excursion from the equilibrium position.  

As before, if the excursions are small, then the approximation as stated in the second equation 

can be used.  In this latter case, write 
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Here, 
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This is a linear relationship between changes in f and changes in the elements of vector x


. As 

before, it is up to the analyst to determine acceptable ranges of the ( 1, )ix i n   .  


