

Introductory Control Systems

Equations of Motion of a Simple Pendulum and Accelerating Simple Pendulum

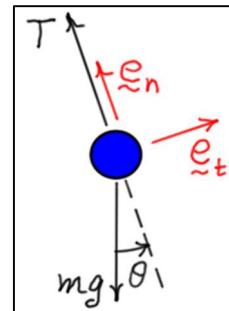
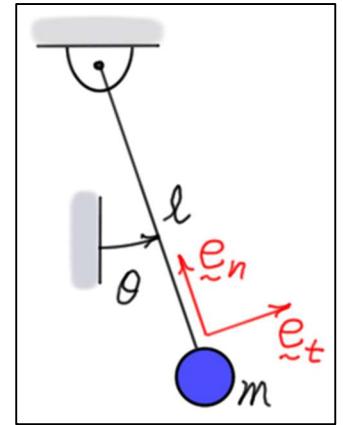
Simple Pendulum

- A **simple pendulum** with end mass m is shown in the figure to the right. The end mass is assumed to be connected to the support with a **light, slender, rigid rod** of length ℓ .
- The **differential equation of motion** of the pendulum can be found by summing forces in the tangential (\tilde{e}_t) direction. Referring to the free body diagram, write

$$\sum F_t = ma_t \Rightarrow -mg \sin(\theta) = m\ell \ddot{\theta}$$

or

$$\ddot{\theta} + \frac{g}{\ell} \sin(\theta) = 0$$



- The solution of this differential equation describes the movement of the pendulum for **any initial conditions**.
- **Equilibrium Positions:** These are found by setting $\ddot{\theta} = 0$ in the differential equation of motion (1). Hence, the pendulum has **two equilibrium positions**: $\theta_{eq} = 0, \pi$.
- **Linearized Equation of Motion:** $\theta_{eq} = 0$ To study **small motions** of the pendulum about the equilibrium position $\theta_{eq} = 0$, let $\theta = \theta_{eq} + \Delta\theta$ and linearize the equation of motion (1) about that position. This is done by linearizing the function $f(\theta) = \sin(\theta)$ about $\theta = 0$.

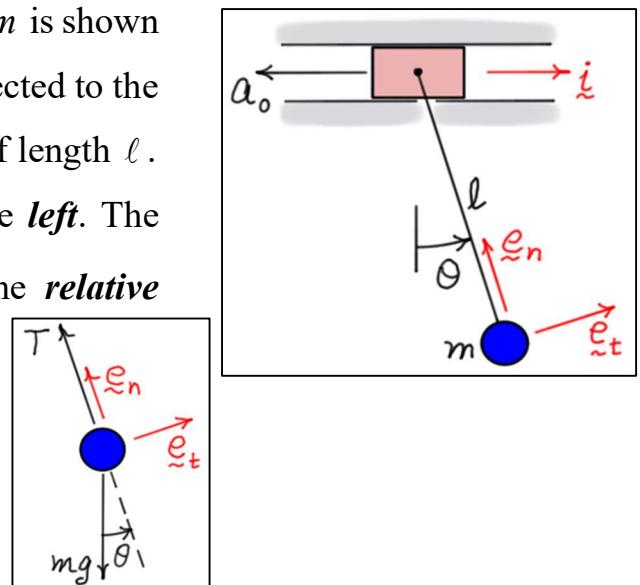
$$\Delta f = \left(\frac{df}{d\theta} \right)_{\theta=0} \Delta\theta = 1 \cdot \Delta\theta = \Delta\theta$$

- Hence, the **approximate linear equation of motion** for small motions about $\theta = 0$ is
- $$\Delta\ddot{\theta} + \left(\frac{g}{\ell} \right) \Delta\theta = 0$$
- The solution of this differential equation describes **small movements** of the pendulum about $\theta = 0$.

Accelerating Simple Pendulum

- An **accelerating simple pendulum** with end mass m is shown in the figure. The end mass is assumed to be connected to the accelerating base with a **light, slender, rigid rod** of length ℓ .
- The base **accelerates** at a **constant** rate a_0 to the **left**. The acceleration of mass m may be found using the **relative acceleration** equation as follows:

$$\begin{aligned} \ddot{a}_m &= \ddot{a}_A + \ddot{a}_{m/A} = -a_0 \dot{i} + (\ell \ddot{\theta} \dot{e}_t + \ell \dot{\theta}^2 \dot{e}_n) \\ &= (\ell \ddot{\theta} - a_0 \cos(\theta)) \dot{e}_t + (\ell \dot{\theta}^2 + a_0 \sin(\theta)) \dot{e}_n \end{aligned}$$



- The **differential equation of motion** of the pendulum may be found by summing forces in the **tangential** (\dot{e}_t) direction. Referring to the **free body diagram**, write

$$\sum F_t = ma_t \Rightarrow -mg \sin(\theta) = m(\ell \ddot{\theta} - a_0 \cos(\theta)) \Rightarrow \ddot{\theta} + \left(\frac{g}{\ell} \sin(\theta) - \frac{a_0}{\ell} \cos(\theta) \right) = 0$$

- The solution of this differential equation describes the movement of the pendulum for **any initial conditions**.
- Equilibrium Positions: As before, these positions are found by setting $\ddot{\theta} = 0$. Hence, the accelerating pendulum has two equilibrium positions: $\theta_{eq} = \tan^{-1} \left(\frac{a_0}{g} \right)$. For example, if $a_0 = 0.5g$, then $\theta_{eq} = \tan^{-1}(0.5) = 26.57^\circ, 206.57^\circ$.
- Linearized Equation of Motion: $a_0 = 0.5g$ and $\theta_{eq} = 26.57^\circ$ To study **small motion** of the pendulum about $\theta_{eq} = 26.57^\circ$, let $\theta = \theta_{eq} + \Delta\theta$ and linearize the equation of motion about that position. This is done by linearizing the function $f(\theta) = \frac{g}{\ell}(\sin(\theta) - \frac{1}{2}\cos(\theta))$ about $\theta_{eq} = 26.57^\circ$.

$$\Delta f(\theta) = \left(\frac{df}{d\theta} \Big|_{\theta=\theta_{eq}} \right) \Delta\theta = \left(\frac{g}{\ell} (\cos(\theta) + \frac{1}{2} \sin(\theta)) \right)_{\theta=\theta_{eq}} \Delta\theta = \left(1.118 \frac{g}{\ell} \right) \Delta\theta$$

- The **approximate linear equation of motion** for small motion about $\theta = 26.57^\circ$ is

$$\boxed{\Delta \ddot{\theta} + \left(1.118 \frac{g}{\ell}\right) \Delta \theta = 0}$$

- The solution of this differential equation describes **small movements** of the pendulum about $\theta = 26.57^\circ$.
- Note the **multiplier** of $\frac{g}{\ell}$ is 1.0 for the non-accelerating pendulum and 1.118 for the accelerating pendulum. It can be shown that this means the **natural frequency** of the **accelerating pendulum** is **slightly higher** than the **non-accelerating pendulum**.