Introductory Control Systems
Examples: Using Laplace Transforms to Solve Differential Equations

Examples

l.

Unforced Spring-Mass-Damper

Problem: Solve the differential equation of motion mx + cx + kx =0 subject to the initial

conditions x(0) =x, and x(0) = x,.

Solution: Taking Laplace transforms of both sides of the differential equation gives
m[s*X (s)— §Xg — Xo ]+ c[sX (8) —x,]+ kX (s)=0

or
[ms® +cs + kX (s) =[ms + clx, + mx,

Solving for X (s) gives

[ms + c]x, + mx, [ms+c]x mXx,
X(S)Z 5 0 0: > 0 + 5 0
ms-+cs+k ms-+cs+k ms-+cs+k

Notes:
a) The two terms on the right side of this equation represent the response of the
system to the initial position and initial velocity, respectively.

b) The characteristic equation of the system is found by setting the denominator of

the right side of the equation to zero (i.e. ms* +cs+k=0).
c) The poles of the system are the roots of the denominator, and the zeros of the
system are the roots of the numerator.
Case l: k/m=2; ¢/m=3; x,20; %,=0

Substituting these values into the equation for X (s) gives

[ms+clx,  xo(s+3)  xy(s+3)

X(s)=—7 == =
ms-+cs+k  sT4+3s+2 (s+D(s+2)

(2 real, unequal poles)

The solution to the differential equation may be found by taking the inverse Laplace

transform of X (s). Using #8 from the Laplace transform table with ¢ =3, a=1, and

b=2 gives
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(s+D(s+2)

x()=L7(X(s)=L" {M} =X, (2€_t - e_zl)

Check: | x(0) = x,(2¢° —€®) =x,(2 - 1) = x,

2(0) = %(1)|_, = xo (27" +2¢7) t

L =x%(-2+2)=0

Case2: k/m=2; ¢/m=2; x,#20; x,=0

Substituting these values into the equation for X (s) gives

X(5)= [ms +c]x, _ Xo(s+2)  xy(s+2)

ms* +cs+k s2+23+2_(s+1)2+1

(2 complex conjugate poles)

The solution to the differential equation may be found by taking the inverse Laplace

transform of X (s). Using #18 from the Laplace transform table with & =2, a=1, and

w =1 gives

(s+1)*+1

x) =L (X(s)=L" {M} =2 x,¢ " sin(t + @)

where ¢ =tan"' (I/(2-1)) = {

Check: (using ¢ =0.7854 (rad))

0.7854 (rad) =45 (deg)
0.7854 + 7 (rad) = 225 (deg)’

2x0(— V2/24+2/2)=

x(0) = x(t)|_, =2 x,¢"sin(0.7854) = ﬁxo(f /2)

5(0) = 5(2)]_y =2 x| —¢ ™" sin(¢ +0.7854) + e cos(t +0.7854) |

t=0

Note that ¢ =0.7854 + 7 (rad) does not satisfy the initial conditions.

. Spring-Mass-Damper with a Unit Step Input

Problem: Solve the differential equation of motion mX + cx + kx=R(¢t) =u,(t), where

u () is the unit step function. Find the final value of x(t) using the final value theorem.
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Case 1: m=1; k/m=2; ¢/m=3; x,=%,=0

Taking Laplace transforms of both sides of the differential equation gives

(ms2 +cs +k)X(S) =L(u@)=5 or |X(5)= s(s +1;(S +2)

Using #9 from the Laplace transform tables with a =1 and b =2 gives

x(t)=L"(X(s))= %[1 —2e' + e‘zt] (forced response)

Using the final value theorem, we have x_  =lim(sX(s))=lim ’{ =1
s o = lim(sX () Ho(/(s+1)(s+2)J 2

Case2: m=1; k/m=2; ¢/m=3; x,#0; x,=0
Taking Laplace transforms of both sides of the differential equation gives
m[szX(s) — 85X, —)'20/] +c[sX(s5)—x, ]+ kX (5) =%

or
[ms® +cs + k] X (s) = % +[ms + c]x,

Solving for X(s) gives

X(s)= 1 +( Xo(ms +c) j: 1 N Xo(s+3)
s(ms* +cs+k) ms* +cs+k s(s? +3s+2) (s* +3s5+2)

N

forced response response due to
initial condition

Using #8 and #9 from the Laplace transform tables gives

x() =L (X(5) =3[ 1-2¢" +e™ Joxy[2e7 -7

forced response response due to
initial condition

Question: What part of this response is transient response and what part is steady-state

response’?!
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