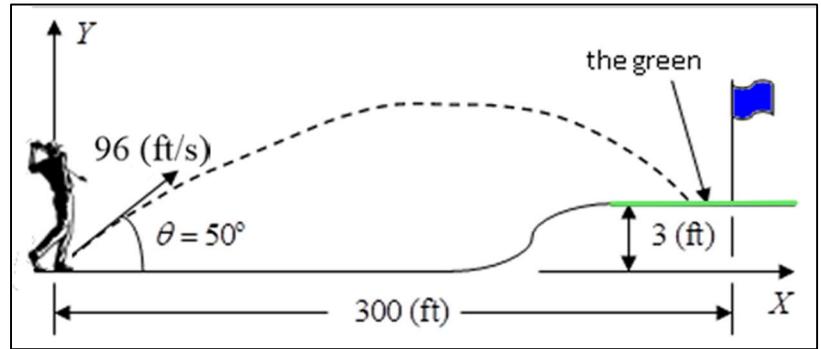


Elementary Engineering Mathematics

Introduction to Complex Numbers

Introduction

Recalling that when we calculate the **roots** of a **quadratic equation**, we may get real roots, or we may get a complex conjugate pair. As an example, consider the golf ball trajectory problem we discussed in earlier notes.



To find the times when the ball is **50 feet** above the ground ($y = 50$ (ft)), we solved the quadratic equation $16.1t^2 - 73.54t + 50 = 0$ using the **quadratic formula** and found

$$t_{1,2} = \frac{73.54 \pm \sqrt{73.54^2 - 4(16.1)50}}{2(16.1)} \approx 2.2839 \pm 1.4527 \Rightarrow t_{1,2} \approx \begin{cases} 0.8312 \approx 0.831 \text{ (s)} \\ 3.7366 \approx 3.74 \text{ (s)} \end{cases}$$

The ball passes the 50-foot mark on its **way up** and on its **way down**.

To find the times when the ball is **100 feet** above the ground, we solved the equation

$$16.1t^2 - 73.54t + 100 = 0$$
 and found

$$t_{1,2} = \frac{73.54 \pm \sqrt{73.54^2 - 4(16.1)100}}{2(16.1)} = \frac{73.54 \pm \sqrt{-1031.87}}{32.2} = \frac{73.54 \pm j\sqrt{1031.87}}{32.2}$$

$$\approx \frac{73.54 \pm j32.1227}{32.2} \approx [2.2839 \pm j0.9976]$$

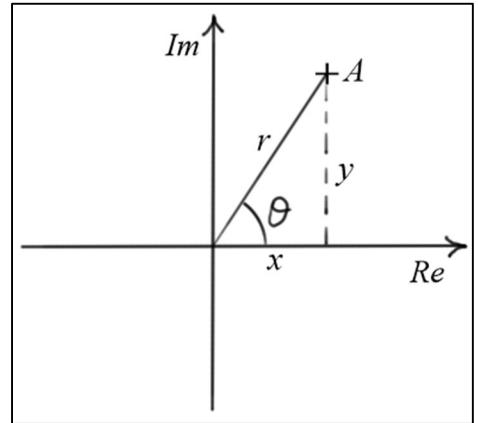
The result is a **complex conjugate pair** ($j = \sqrt{-1}$). This occurs because the ball **never reaches 100 feet**, so **no real solution exists**.

Complex Numbers and the Complex Plane

Generally, complex numbers have both **real** (Re) and **imaginary** (Im) parts. The diagram shows a complex number A plotted in the **complex plane**. We can express A using either **rectangular** or **polar** coordinates.

Rectangular form: $A = x + j y$

Polar Form: $A = r e^{j\theta}$ or $A = r \angle \theta$



We can relate the rectangular and polar forms using **right-triangle trigonometry**.

Given the **rectangular form** $A = x + j y$, we can find the **polar form** $A = r e^{j\theta}$.

$$r = \sqrt{x^2 + y^2} = |A| \dots \text{the magnitude of } A$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) \dots \text{the phase angle of } A$$

Given the **polar form** $A = r e^{j\theta}$, we can find the **rectangular form** $A = x + j y$.

$$x = r \cos(\theta) \dots \text{the real part of } A$$

$$y = r \sin(\theta) \dots \text{the imaginary part of } A$$

Using these results, we can identify Euler's formula:

$$A = x + j y = (r \cos(\theta)) + j(r \sin(\theta)) = r(\cos(\theta) + j \sin(\theta)) = r e^{j\theta}$$

or

$$e^{j\theta} = \cos(\theta) + j \sin(\theta) \dots \text{Euler's formula}$$

Complex Conjugates

Given a complex number $A = a_1 + j a_2$, the complex conjugate of A is defined as

$$A^* \triangleq a_1 - j a_2 \dots \text{the complex conjugate}$$

Operations with Complex Numbers

Addition and Subtraction

Addition and subtraction of complex numbers is most easily done in **rectangular form**. Given two complex numbers $A = a_1 + j a_2$ and $B = b_1 + j b_2$, then

$$A + B = (a_1 + b_1) + j(a_2 + b_2) \quad \text{and} \quad A - B = (a_1 - b_1) + j(a_2 - b_2)$$

If A and B are given in **polar form**, it is best to **convert** them to rectangular form before adding or subtracting.

Multiplication and Division (Polar Form)

Multiplication and division of complex numbers is most easily done in **polar form**.

$$A \times B = (ae^{j\alpha})(be^{j\beta}) = ab e^{j(\alpha+\beta)} \quad \text{and} \quad A / B = (ae^{j\alpha}) / (be^{j\beta}) = (a/b)e^{j(\alpha-\beta)}$$

$$A \times B = (a\angle\alpha)(b\angle\beta) = ab\angle(\alpha + \beta) \quad \text{and} \quad A/B = (a\angle\alpha) / (b\angle\beta) = (a/b)\angle(\alpha - \beta)$$

If A and B are given in **rectangular form**, it is usually best to **convert** them to polar form before multiplying or dividing.

Multiplication/Division (Rectangular Form)

Multiplication and division of complex numbers can also be done (with a little more work) using **rectangular form**.

Multiplication

Given two complex numbers $A = a_1 + j a_2$ and $B = b_1 + j b_2$, then their product is

$$A \times B = (a_1 b_1 - a_2 b_2) + j(a_1 b_2 + a_2 b_1) \quad (j \times j = -1)$$

Note that if B is the complex conjugate of A ($B = A^*$), the product is a real number equal to the square of the magnitude of A .

$$A \times A^* = (a_1^2 + a_2^2) + j(a_1 a_2 - a_2 a_1) = a_1^2 + a_2^2 = |A|^2$$

Division

To compute the ratio of A and B is a little more involved. To ensure that the imaginary parts appear only in the numerator, we must make use of the complex conjugate.

$$\frac{A}{B} = \frac{a_1 + j a_2}{b_1 + j b_2} = \left(\frac{a_1 + j a_2}{b_1 + j b_2} \right) \cdot \left(\frac{b_1 - j b_2}{b_1 - j b_2} \right) = \frac{(a_1 b_1 + a_2 b_2) + j(a_2 b_1 - a_1 b_2)}{b_1^2 + b_2^2}$$

Example #1

Given: $A = 5 + j 10$ Find: the polar form of A

Solution: $r = |A| = \sqrt{5^2 + 10^2} = \sqrt{125} \approx 11.2$

$$\theta = \tan^{-1}(10/5) \approx 1.107 \text{ (rad)} \approx 63.4 \text{ (deg)}$$

Example #2

Given: $A = -5 + j 10$ Find: the polar form of A

Solution: $r = |A| = \sqrt{5^2 + 10^2} = \sqrt{125} \approx 11.2$

$$\theta = \tan^{-1}(10/-5) \approx -1.107 + \pi \approx 2.03 \text{ (rad)} \approx 117 \text{ (deg)}$$

Example #3

Given: $A = 5 + j 10$ Find: $A \times A^*$

Solution: $A \times A^* = (5 + j 10) \times (5 - j 10) = 5^2 + 10^2 = 125$

Example #4

Given: $A = 5 + j 10$ and $B = 3 - j 8$ Find: $A + B$, $A \times B$ and A/B

Solution: $A + B = (5 + j 10) + (3 - j 8) = 8 - j 2$

$$A \times B = (5 + j 10) \times (3 - j 8) = ((5 \times 3) - (-8 \times 10)) + j((3 \times 10) - (5 \times 8))$$
$$\Rightarrow A \times B = 95 - j 10$$

$$A/B = \frac{(5 + j 10)}{(3 - j 8)} = \frac{(5 + j 10) \times (3 + j 8)}{(3 - j 8) \times (3 + j 8)} = \frac{((15 - 80) + j(30 + 40))}{3^2 + 8^2} = \frac{-65 + j 70}{73}$$
$$\Rightarrow A/B = -0.89 + j 0.959$$

Example #5

Given: $A = 5e^{j(\pi/3)}$ and $B = 8e^{j(-\pi/6)}$

Find: $A \times B$ and A/B

Solution:
$$A \times B = \left(5e^{j(\pi/3)}\right) \times \left(8e^{j(-\pi/6)}\right) = (5 \times 8) e^{j(\pi/3 + -\pi/6)} = 40e^{j(\pi/6)}$$

$$A/B = \left(5e^{j(\pi/3)}\right) / \left(8e^{j(-\pi/6)}\right) = (5/8) e^{j(\pi/3 - -\pi/6)} = 0.625e^{j(\pi/2)}$$

Example #6

Given: $A = 5e^{j(\pi/3)}$ and $B = 8e^{j(-\pi/6)}$

Find: $A + B$

Solution: We first **convert** the polar forms to rectangular forms, then add

$$A = 5e^{j(\pi/3)} = 5(\cos(\pi/3) + j \sin(\pi/3)) \approx 2.5 + j4.33$$

$$B = 8e^{j(-\pi/6)} = 8(\cos(-\pi/6) + j \sin(-\pi/6)) \approx 6.928 - j4$$

$$A + B \approx 9.43 + j0.33$$

If necessary, this result can then be converted back to polar form as described above.