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Introductory Control Systems 
Examples – Partial Fraction Expansions 
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 Find:  a) the partial fraction expansion of ( )X s ,  and b) ( )x t . 

 Solution:  

 Given the characteristic equation has real, unequal roots, the partial fraction expansion 

has the form 

   

  

 where the coefficients ( 1,2,3)iK i   can be calculated as follows. 

 

   

 

 

   

  

 So, the partial fraction expansion is 

 

  

 Using the Laplace transform table gives 
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2. Given: 2

5 15
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 Find: a) the partial fraction expansion of ( )X s ,  and b) ( )x t . 

 Solution:  

 Given the characteristic equation has one real root and a pair of complex conjugate 

roots, the partial fraction expansion is of the form 

  2( )
2 3 9

K As B
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s s s
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 Here, the coefficient K  can be found as before 

 

   

 and the coefficients A  and B  are found by clearing fractions as follows 

   

 

 Equating the coefficients of the powers of s  on both sides of the equation gives 

  0A K   2( )s  

  2 3 5A B K    1( )s  

  9 2 15K B   0( )s  

 Solving the first and third equations gives 5
7A    and 30

7B  . So, the partial fraction 

expansion is 

   

 

 Using #4 and #18 in the Laplace transform tables gives 

 

    

  

 The correct choice of   must be made to satisfy the initial conditions of the differential 

equation (not given here). 
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3. Given: 
5 4 3 2
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 Find: What is the form of ( )x t ? Identify the steady-state and transient parts of ( )x t . 

 Solution:  

 Using the root solving feature on your calculator, the poles of ( )X s  are found to be 

5 j , 2 3.4641 j  , 5 , and 2 . So, the partial fraction expansion and ( )x t  have the 

forms 
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