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Introductory Control Systems 
Transfer Functions 

Single-Input, Single-Output (SISO) Systems 

o For linear systems that have a single input and a single output, a single transfer function can 

be defined that quantifies the dynamic behavior of the system. 

o Mathematically, the transfer function is defined as the Laplace transform of the output 

divided by the Laplace transform of the input, assuming all initial values are zero. 

o As an example, consider the single degree-of-freedom mass, spring, damper system shown 

with a forcing function ( )f t . For this system, the differential equation of motion is  

 ( )mx b x k x f t     

o Applying Laplace transforms to both sides of the equation 

assuming all initial values are zero gives 

  
2( ) ( ) ( )ms bs k X s F s    

Given that the input of the system is ( )f t  and the output is ( )x t , the 

system transfer function is defined to be 
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o For comparison, consider the same system with the base motion 

( )y t  as the system input. The differential equation of motion is 

 mx b x k x b y k y       

o Applying Laplace transforms to this equation gives 

 2( ) ( ) ( ) ( )ms bs k X s bs k Y s     

Given the input of the system is ( )y t  and the output is ( )x t , the 

system transfer function is 
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o If the input to the system is the impulse function, ( )t , then ( )X s  the Laplace transform of 

the response is equal the transfer function, since ( ) ( ( )) 1F s t  . In this case, the transfer 

function describes the impulse response of the system. 

o In general, a transfer function will be a ratio of two polynomials. 
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o The roots of the numerator are called the zeros of the system, and the roots of the 

denominator are called the poles of the system.  In these notes, the order of the numerator is 

assumed to be less than the order of the denominator, that is, m n . 

Multiple-Input, Multiple-Output (MIMO) Systems 

o For linear systems with M input variables and N output variables, we define M N  transfer 

functions, one relating each input/output pair. Together, these transfer functions can be used 

to quantify the behavior of the system. As before, the transfer function is defined as the 

Laplace transform of the output variable divided by the Laplace transform of the input 

variable, assuming all initial values are zero. 

o As an example, consider the two degree-of-freedom, mass-spring system shown with forcing 

functions 1( )f t  and 2( )f t . It can be shown that the equations of motion for this system can be 

written as 

 1 1 1 2 1 2 2 1

2 2 2 1 2 2 2

( ) ( )

( )

m x k k x k x f t

m x k x k x f t

   
  




 

o Applying Laplace transforms to these equations 

assuming all initial values are zero and writing 

the resulting equations in matrix form gives 

    
2

1 11 1 2 2

2
2 22 2 2

( ) ( )
[ ] ( ) ( )

( ) ( )

X s F sm s k k k
A X s F s

X s F sk m s k

       
            
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o From this equation, four transfer functions can be defined. Note that for transfer functions 

involving 1( )F s , 2( )F s  is taken as zero, and for the transfer functions involving 2( )F s , 1( )F s  

is taken as zero. The four transfer functions are 
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o Using Cramer's Rule, the boxed equation above can be solved for 1( )X s  and 2( )X s . 
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and  
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 where 2 2 2
1 1 2 2 2 2det[ ] ( )( )A m s k k m s k k     . 

o From these results, the four transfer functions of the system are 
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 Note that all four transfer functions have the same characteristic equation. 

Experimental Determination of Transfer Functions 

o To measure transfer functions experimentally, actuators are used to excite the system, 

sensors to measure the system excitation (input) and response (output), and a data acquisition 

system to record the signals. 

o MATLAB’s system identification toolbox uses these signals to estimate the transfer function. 

o A dynamic signal analyzer can also be used. In addition to recording the system input and 

output signals, it can calculate their Fast Fourier Transforms (FFT’s) and display the ratio 

(output/input) in the form of a Bode diagram. The Bode diagram is one way of graphically 

displaying a transfer function. It displays the frequency response of the system. Bode 

diagrams are presented in later notes. 


