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Introductory Control Systems 
Cramer’s Rule for Solving a System of Linear Algebraic Equations 

 Consider a set of linear algebraic equations with known coefficient matrix  A , known right-

side vector  b , and vector of unknowns  x .   

     A x b  

One approach to solving these equations is Cramer’s rule. An illustration of how to apply 

Cramer’s rule to a set of three equations follows. The extension of the rule to larger sets of 

equations should be obvious. 

 Given the set of three linear algebraic equations: 
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Using Cramer’s rule, the solutions for the three unknowns ( 1,2,3)ix i   can be written as follows. 
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Note the denominator of the solution for each of the unknowns is the same. 

 


