Elementary Engineering Mathematics
Application of Sine, Cosine, and Exponential Functions in Control Systems

Vibration

Vibration refers to oscillatory motion of a body or structure

about an equilibrium position. In the case of a simple spring-mass | Equilibrium

system, the equilibrium position is the at-rest position of the spring- 2): mjl_ ¢
supported mass. In structural systems, vibrations occur around the .

at-rest shape of the structure. In most cases, vibrations represent — m
relatively small displacements of the system.

Vibrational motion can be either fiee or forced. In the case of fiee motion, only gravity
continues to act on the system as it moves, whereas in forced motion, some other external force
or forces continue to excite the system as it moves. Free motion can be categorized as damped
or undamped. Damped motion eventually decays away to zero while undamped motion
continues forever (in theory). Obviously, all systems have some damping, but we often neglect
damping as we analyze systems if its effects are small.

Undamped, Free Vibration

Neglecting damping, the position and velocity of the mass shown above can be written as

x(t) = Asin(wt) + Bcos(wt)| and |v(t) = Awcos(wt) — Bwsin(wt) (1)

These equations describe the position and velocity of the mass as functions of time. The variable
o (omega) represents the frequency of the motion in radians per second. This frequency is often
referred to as the natural frequency of the system and is related to the mass and spring stiffness

as follows

= \/% (rad/s) (2)

The constants 4 and B are determined from the initial conditions. For example, if the mass has

initial displacement x(0) = x, and initial velocity v(0) =v,, then

x(0) = x, = (4sin(w?) + Beos(wt)) =B

v(0)=v, = (Aa)cos(a)t) — Ba)sin(a)t))tzo = Aw
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Given the above results, the displacement function is

x(t):v—a‘gsin(\/% t)+x0 cos(\/% t) (3)

The result in Eq. (3) can be written as a single phase-shifted sine wave as follows. First,

substitute the following equations for 4 and B into Eq. (3)

A== Mcos(#)| and |B=x, = M sin(g) 4

Then use the trigonometric identity [sin(a)cos(f) + cos(a)sin(f) =sin(a + )| to get

x(t)= Msin(\/% t) cos(¢) + Mcos(\/% t) sin(¢)
= M(sin(\/% t) cos(¢) + cos(\/% t) sin(¢)) (5)
:Msin(\/% t+ ¢)

The amplitude M and the phase angle ¢ can be determined from Eq. (4) by noting

A* + B* = M cos* (@) + M *sin*(¢) = M* (cos2 (@) + sin2(¢)) =M’ (6)
B Msi -1
i ﬁi((?) =tan(¢@)| or |[#p=tan" (B/A) (7)

The result in Eq. (3) can also be written as a single phase-shifted cosine wave. In this case, it

can be shown that

x(t):Mcos(\/%rm) M =4+ B| [p=tan" (—4/B) 8)

Example:
Given: m=0.5 (slug), k=50 (Ib/ft), x, =0.25 (ft), v, =5 (ft/s)

Find: a) x(¢#) as a sum of sine and cosine functions, b) x(#) as a single sine function with

magnitude and phase, c) the time shift of the sine function, d) the time when the mass first
reaches its largest displacement, and e) 7' the period of the oscillation.
Solution:

2) w:\/%:\/s%-szx/@:w (rad/s) = |x(t)=sin(107)+Lcos(107) (f1)
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b)

M =~0.5% +0.25% = 0.559 (ft)

and

¢=tan” (B/A)=tan”' (/)

26.565 (deg)
0.4636 (rad)

' (4)~4

=

x(t) ~ 0.559sin (107 +0.4636) (ft)

c) To find the time shift, set the argument of the sine function to zero, and solve for the time.

107+0.4636=0 = ¢=-0.4636/10=-0.04636 =

time shift =0.04636 (sec)

d) The maximum displacement will occur when the argument of the sine function is an odd

multiple of /2. So, set

10£+0.4636 =7/2=1.5708 =

t=(1.5708—0.4636) /10~ 0.1107 ~ 0.11 (sec)

1

and |7 =

f=42~1.59 (Hz)

~0.628 (sec)
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Damped, Free Vibration

If a viscous damper is added to the system, then it will no longer

oscillate indefinitely. It will eventually come to rest again at the

equilibrium position. The character of the response as it returns

depends on how much damping is present. If there is not enough

damping to eliminate the oscillations, the system is said to be under-

damped. If there is enough damping to eliminate the oscillations, the

system is said to be over-damped.

Equilibrium
Position

G e
X
¥

Sy

To determine which type of response a system will have, we calculate c, the critical damping

coefficient.

¢, =2mJk/m

)

If the damping coefficient c is greater than ¢, (¢ >c,), the response will be over-damped, and if

¢ is less than ¢, (¢ <c,), the response will be under-damped. If ¢ = c_, the response is critically

damped.

Over-Damped Vibration:

c>c,

In this case, the mass does not oscillate as it returns to the equilibrium position. Instead, the

mass moves directly to the its final position, slowing down as it approaches. The position and

velocity of the mass can be written as the sum of two exponential functions

x(t)= Ae™' + Be™!

v(t) = AAe™ + BAe™

and

|

/11}: ~(35) () &

B () (s -

3=

(10)

As before, the coefficients 4 and B are found from the initial position and velocity of the mass.

In this case, we must solve two simultaneous equations for 4 and B.

x(0)=(Ae*" +Be™)
w(0)=(A42,e" +BA,e™)

t=0

t=0

=

=

A+ B=x,

AA+A,B=v,

(1)

Kamman — Elementary Engineering Mathematics — App. of Sine, Cosine, and Exponential Functions in Control Systems — page: 4/7



Example:
Given: m=0.5 (slug), ¢ =15 (Ib-s/ft), k=50 (Ib/ft), x, =0.25 (ft), v, =5 (ft/s)

Find: a) c, the critical damping coefficient, and b) the displacement function x(¢).

Solution:

a) ¢, =2m\Jk/m=2x0.5x,/50/0.5 =10 (Ib-s/ft) so, the system is over-damped.

s 15 15 )" _ 50
o [[4]- (o)) k| |-l -3 | [
A || (s 5 ¢_so| (2618
) \) 4] ) () -
Simultaneous equations for the coefficients:
A+ B=0.25 1 1 A 0.25
o =
-3.824-26.18B=5 -3.82 -26.18||B 5
Solving using Cramer’s Rule:
0.25 1
“ s a61s| 11545
A= L=~ ~0.5163
1 1 —22.36
det
-3.82 -26.18
1 0.25
“ 58 s 5.955
B= : == ~—0.2663
1 1 —22.36
det
-3.82 -26.18

So,

(See plot below)

x(1) [ (0.5163) > —(0.2663)e > | (f1)

Note from the plot that the mass moves away from the equilibrium for a short time due to its

initial velocity, but it then returns exponentially to the equilibrium position (x =0).
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. Overdamped, Free Response of Spring-Mass-Damper System
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Under-Damped Vibration: |c <c,

In this case, the mass oscillates as it returns to the equilibrium position. The amplitude of the
oscillations reduce as time progresses. The position of the mass can be written as an exponential

function times the sum of a sine and cosine function.

C, A = L
x(t) = e Vnr (Asin(a)d 1)+ Bcos(w,1))| and [VO ' ( o ) o }/ “ (12)
B=x,

The frequency of the oscillation is |@, = /£ — (ﬁ)z . (13)

As previously noted, the sum of the sine and cosine terms can be written as a single phase-

shifted sine function.

x(t) = Me ") sin(w, t + §)

with |M =V A + B’ | and |¢=tan"'(B/4)).
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Example:
Given: m=0.5 (slug), ¢ =5 (Ib-s/ft), k=50 (Ib/ft), x, =0.25 (ft), v, =5 (ft/s)

Find: a) c, the critical damping coefficient, and b) the displacement function x(¢).

Solution:

a) ¢, =2m\Jk/m=2x0.5x,/50/0.5 =10 (Ib-s/ft) so, the system is under-damped.

b) |0, = 3L ~(535) =75 ~8.6603 (rad’s)

A=[v, + ()% | Jo, = 5+(555)0.25]/8.6603 ~ 6.25/8.6603 ~ 0.7217

-

B=x,=0.25|, and

-

19.11 (deg)
0.3335 (rad)

M ~+0.7217° +0.25> ~ 0.7638|, ¢ztan_1(0.25/0.7217)z{

So,

x(t) = 0.7638 ¢ sin((8.6603)7 + 0.3335) (ft)| (See plot below)

Note from the plot that the mass initially moves away from the equilibrium position due to its

initial velocity, then it oscillates about the equilibrium position as it returns to that position.
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