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Elementary Engineering Mathematics 
Application of Sine, Cosine, and Exponential Functions in Control Systems 

Vibration 

 Vibration refers to oscillatory motion of a body or structure 

about an equilibrium position. In the case of a simple spring-mass 

system, the equilibrium position is the at-rest position of the spring-

supported mass. In structural systems, vibrations occur around the 

at-rest shape of the structure. In most cases, vibrations represent 

relatively small displacements of the system. 

 Vibrational motion can be either free or forced. In the case of free motion, only gravity 

continues to act on the system as it moves, whereas in forced motion, some other external force 

or forces continue to excite the system as it moves. Free motion can be categorized as damped 

or undamped. Damped motion eventually decays away to zero while undamped motion 

continues forever (in theory). Obviously, all systems have some damping, but we often neglect 

damping as we analyze systems if its effects are small. 

Undamped, Free Vibration 

 Neglecting damping, the position and velocity of the mass shown above can be written as  

  ( ) sin( ) cos( )x t A t B t     and  ( ) cos( ) sin( )v t A t B t      (1) 

These equations describe the position and velocity of the mass as functions of time. The variable 

  (omega) represents the frequency of the motion in radians per second. This frequency is often 

referred to as the natural frequency of the system and is related to the mass and spring stiffness 

as follows 

   (rad/s)k
m   (2) 

The constants A and B are determined from the initial conditions. For example, if the mass has 

initial displacement 0(0)x x  and initial velocity 0(0)v v , then  

   0 0
(0) sin( ) cos( )

t
x x A t B t B 


     

   0 0
(0) cos( ) sin( )

t
v v A t B t A    


     
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Given the above results, the displacement function is  

     0
0( ) sin cos
v k k

m mx t t x t   (3) 

 The result in Eq. (3) can be written as a single phase-shifted sine wave as follows. First, 

substitute the following equations for A and B into Eq. (3)  

  0 cos( )
v

A M     and  0 sin( )B x M    (4) 

Then use the trigonometric identity sin( )cos( ) cos( )sin( ) sin( )         to get 

  

   
    
 

( ) sin cos( ) cos sin( )

sin cos( ) cos sin( )

sin

k k
m m

k k
m m

k
m

x t M t M t

M t t

M t

 

 



 

 

 

 (5) 

The amplitude M and the phase angle   can be determined from Eq. (4) by noting 

   2 2 2 2 2 2 2 2 2 2cos ( ) sin ( ) cos ( ) sin ( )A B M M M M          (6) 

  
sin( )

tan( )
cos( )

B M

A M

 


    or  1tan B A   (7) 

 The result in Eq. (3) can also be written as a single phase-shifted cosine wave. In this case, it 

can be shown that  

   ( ) cos k
mx t M t     2 2M A B     1tan A B    (8) 

Example: 

Given:  0.5 (slug)m  , 50 (lb/ft)k  , 0 0.25 (ft)x  , 0 5 (ft/s)v   
 

Find: a) ( )x t  as a sum of sine and cosine functions,  b) ( )x t  as a single sine function with 

magnitude and phase, c) the time shift of the sine function,  d) the time when the mass first 
reaches its largest displacement, and e) T  the period of the oscillation. 

Solution: 

a) 50 100 10 (rad/s)0.5
k
m          5 1

10 4( ) sin 10 cos 10   (ft)x t t t    



Kamman – Elementary Engineering Mathematics – App. of Sine, Cosine, and Exponential Functions in Control Systems – page: 3/7 
 

b) 2 20.5 0.25 0.559 (ft)M      and 

       1 1 151
4 10

1
2

26.565 (deg)
tan tan tan

0.4636 (rad)
B A    

    


 

  ( ) 0.559sin 10 0.4636   (ft)x t t    

c) To find the time shift, set the argument of the sine function to zero, and solve for the time. 

 10 0.4636 0 0.4636 10 0.04636 time shift 0.04636 (sec)t t          

d) The maximum displacement will occur when the argument of the sine function is an odd 

multiple of 2 . So, set 

 10 0.4636 2 1.5708 (1.5708 0.4636) / 10 0.1107 0.11 (sec)t t         

e) 10
2 1.59 (Hz)f     and  1

1.5915 0.628 (sec)T    
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Damped, Free Vibration 

 If a viscous damper is added to the system, then it will no longer 

oscillate indefinitely. It will eventually come to rest again at the 

equilibrium position. The character of the response as it returns 

depends on how much damping is present. If there is not enough 

damping to eliminate the oscillations, the system is said to be under-

damped.  If there is enough damping to eliminate the oscillations, the 

system is said to be over-damped. 

 To determine which type of response a system will have, we calculate cc  the critical damping 

coefficient. 

  2cc m k m  (9) 

If the damping coefficient c  is greater than cc   cc c , the response will be over-damped, and if 

c  is less than cc  cc c , the response will be under-damped. If cc c , the response is critically 

damped. 

Over-Damped Vibration:  cc c  

 In this case, the mass does not oscillate as it returns to the equilibrium position. Instead, the 

mass moves directly to the its final position, slowing down as it approaches. The position and 

velocity of the mass can be written as the sum of two exponential functions 

  
1 2

1 2
1 2

( )

( )

t t

t t

x t Ae Be

v t A e B e

 

  

 

 
  and  

   

   

2

1

22

2 2

2 2

c c k
mm m

c c k
mm m




      
   

      

 (10) 

As before, the coefficients A and B are found from the initial position and velocity of the mass. 

In this case, we must solve two simultaneous equations for A and B. 

  
 
 

1 2

1 2

00

1 2 1 2 00

(0)

(0)

t t

t

t t

t

x Ae Be A B x

v A e B e A B v

 

    




    

    
 (11) 
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Example: 

Given:  0.5 (slug)m  , 15 (lb-s/ft)c  , 50 (lb/ft)k  , 0 0.25 (ft)x  , 0 5 (ft/s)v   

Find:  a) cc the critical damping coefficient, and b) the displacement function ( )x t . 

Solution: 

a) 2 2 0.5 50 0.5 10 (lb-s/ft)cc m k m      so, the system is over-damped. 

b) 
   

   

   

   

2 2

1

2 22

15 15 50
2 2 2 0.5 2 0.5 0.5

15 15 50
2 2 2 0.5 2 0.5 0.5

3.82

26.18

c c k
mm m

c c k
mm m




 

 

              
                       

 

 Simultaneous equations for the coefficients: 

  
0.25 1 1 0.25

3.82 26.18 5 3.82 26.18 5

A B A

A B B

      
             

 

 Solving using Cramer’s Rule: 

  

0.25 1
det

5 26.18 11.545
0.5163

1 1 22.36
det

3.82 26.18

A

 
     

 
   

 

  

1 0.25
det

3.82 5 5.955
0.2663

1 1 22.36
det

3.82 26.18

B

 
     

 
   

 

 So,  

  3.82 26.18( ) (0.5163) (0.2663)  (ft)t tx t e e      (See plot below) 

Note from the plot that the mass moves away from the equilibrium for a short time due to its 

initial velocity, but it then returns exponentially to the equilibrium position ( 0x  ). 
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Under-Damped Vibration:  cc c  

 In this case, the mass oscillates as it returns to the equilibrium position. The amplitude of the 

oscillations reduce as time progresses. The position of the mass can be written as an exponential 

function times the sum of a sine and cosine function. 

    2( ) sin( ) cos( )
c

m t

d dx t e A t B t     and  
 0 0

0

2 d
c
mA v x

B x

   


 (12) 

The frequency of the oscillation is  2

2d
k c
m m   . (13) 

 As previously noted, the sum of the sine and cosine terms can be written as a single phase-

shifted sine function. 

   2( ) sin( )
c

m t

dx t Me t    

with 2 2M A B   and  1tan B A  . 
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Example: 

Given:  0.5 (slug)m  , 5 (lb-s/ft)c  , 50 (lb/ft)k  , 0 0.25 (ft)x  , 0 5 (ft/s)v   

Find:  a) cc the critical damping coefficient, and b) the displacement function ( )x t . 

Solution: 

a) 2 2 0.5 50 0.5 10 (lb-s/ft)cc m k m      so, the system is under-damped. 

b)  250 5
0.5 2 0.5 75 8.6603 (rad/s)d     , 0 0.25B x  , and 

    0 0
5

2 2 0.55 0.25 8.6603 6.25 8.6603 0.7217d
c
mA v x              , 

 2 20.7217 0.25 0.7638M    ,  1 19.11 (deg)
tan 0.25 0.7217

0.3335 (rad)
  
  


 

 So,  

   5( ) 0.7638 sin (8.6603) 0.3335  (ft)tx t e t   (See plot below) 

Note from the plot that the mass initially moves away from the equilibrium position due to its 

initial velocity, then it oscillates about the equilibrium position as it returns to that position. 
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