Elementary Engineering Mathematics

The Derivative of a Function as a Function

Previously, we learned about the meaning of the derivative of a function f(x) at some

arbitrary point x,. The derivative f'(x,) is simply the slope of the tangent line at x,. We now

df

consider the function f’(x) or d—(x) which consists of the derivatives of f(x) at all points
X

within the range of x . The following table gives the derivatives of some common functions used

in engineering.

Name Function, f(x) | Derivative, f'(x)= %( x)
Constant a 0

Polynomial terms ax" nax"'
Exponential " ae’

Sine sin(ax a cos(ax)
Cosine cos(ax) —a sin(ax)

To evaluate the derivative at some point x, , we can simply evaluate the derivative function f”(x)

at x,.

These results can be extended to combinations of functions by using the following rules for

differentiation.

Name

Formula

Summation rule

%(f(X)+g(x))=f’(x)+g’(x)

Multiplication by a constant, a

%(af(x))w £

Product rule

i(f (x)g(x))= f'(x)g(x) + f(x)g'(x)

Chain rule

df dy df )

(f(())) i dx
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Example 1:

Given: The path of a golf ball as a function of horizontal position
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Figure 1. Height of Golf Ball as a Function of Distance, x
Recall that the velocity of the ball is in the direction of the tangent line.
Find: (a) The derivative function f'(x), (b) the derivative at x=x,=50(ft) and
x =x, =200 (ft), (c) the maximum height of the ball, (d) a plot of function f’(x), and
() the second derivative function f"(x)=df"/dx.

Solution:

(a) Using rule 1 above, we can find the derivative function f”(x).

o d ] d d ]
f (x)=$(1.1917 x—(4.2278x10 3)x2)=a(1.1917 x)—a((4.2278><10 )
d s\ d
=1.1917E(x)—(4.2278><10 3)5(%)
=(1.1917x1)—(4.2278x10 ) (2x)
or
['(x)=1.1917~(8.4556x10"" ) x (2)
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(b) We can use the derivative function in Eq. (2) to find the derivative of the quadratic function

at any point in the domain of x.

At x=1x,=50 (fi): | f'(x)| _,, =1.1917 - (8.4556 10 ) (50) ~ 0.76892 ~ 0.769

At x=1x,=200 (f): | f'(x)] _,, =1.1917 - (8.4556x 10" )(200) ~ —0.49942 ~ ~0.499

(c) The maximum height of the ball occurs where the slope of the tangent line is zero.

[1(#)=0=1.1917-(8.4556x107)% = [$=1.1917/8.4556e—3=140.94 (ft)

Vo = (B =1.1917 £ -(42278x107)%* = |y, =83.977~84 (f})

(d) The plot of f”(x) indicates that the slope of f(x) is positive over the first half of the range of

x, negative over the second half, and zero at the maximum height of the ball. This confirms

the fact that the function reached a maximum at this point, and not a minimum. When f"(x)

is positive, f(x) is increasing, and when f”(x) is negative, f(x) is decreasing.
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Figure 2. Slope of the Path of the Golf Ball as a Function of x

(¢) Using rule I, f”(x)=%[1.1917—(8.4556x103)x]=—8.4556x103<0. This again

confirms that the function is maximum at this point. If f"'(x) <0, the function is at a local

maximum, and if f"'(x)> 0, the function is at a local minimum.
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Example 2:

Given: The height of a golf ball as a function of time |y = f () = 73.54¢t —16.1£>

Height, y (ft)

Height, y(t) (ft)

X 2.2839
Y 83.9772

1.5 2 2.5 3 3.5 4 4.5 5
Time, t (sec)

Figure 3. Height of the Ball as a Function of Time

Find: (a) the derivative function f'(¢), (b) the slope of f(¢) at t=0.5 (sec), and (c) the time ¢

when the ball reaches maximum height.

Solution:

(a) We can again use rule 1 to find '(¢).

b _
dt

= f'(t)=(73.54x1)—16.1(2¢) =73.54 - 32.2¢

(b) When ¢=0.5 (sec), %

t=0.5

= '], s =73.54—(32.2x0.5) ~ 57.44 (ft/sec)

velocity of the ball in the Y-direction at this instant.

(c) To find time 7, we set f'(f) =0, and solve

Fi()=0=73.54-32.2f = |f=73.54/32.2~2.2839 ~2.28 (sec)

. This 1is the
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Example 3:

Given: The horizontal position and height of a golf ball are functions of time

x(1)=61.71¢ y(t)=73.54t-16.1¢

Find: The velocity vector of the ball when x =x, =50 (ft).

Solution:

3)

The components of the velocity of the ball in the X and Y directions are given by the derivatives

of Egs. (3) with respect to time. We must first find the time ¢ required to get to x =x, =50 (ft).

x(H)=50=61.71F7 = |

50/61.71~0.81024 (sec)

v.(t) = % =x(1)=61.71x(1) = 61.71 (ft/sec)| (same at all #)

v, (1) = % = y(¢)=73.54-32.2¢

=|v,(f)=73.54—(32.2x 0.81024) =~ 47.45 (ft/sec)

So, at x =x, =50 (ft), we have |v=61.71i + 47.45 j (ft/sec)

Example 4: Undamped, free vibration

Given: In response to the initial position x, and initial velocity v,,

the undamped spring-mass-damper system has displacement

function

x(t)=Lsin(@t)+x,cos(wt) a):\/%

47.45 j
61.71i
Equilibrium
Position k
( e
X
Y m

Find: (a) the velocity function v(¢)=x(¢), (b) the acceleration function a(z)=v(¢)=x(t),

(c) x(0), v(0), and a(0), the position, velocity and acceleration of the mass at # =0, and

(d) the times when x(f) has a maximum or minimum if v, =0, and verify which are

maxima and which are minima.
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Solution:

(a) Using rules 1 and 2:
v(t) = X(¢) = %[%’Sin(a) t)+x,cos(@ t)} = %[%sin(m t)} + %[xo cos (@ t)]

= %O,écos(a) t)—x,wsin(wt)

v(t) =v,cos(wt) - x,wsin(wt)

(b) Again, using rules 1 and 2:
. : d :
a(t) =%(t)=v(t) = E[vo cos(@t)—x,wsin(® t)]

:%[vo cos(@ t)] _%[xoa)sin(a) t)]

a(t) =—v, o sin(@ 1) — x,0° cos(w )

() |x(0)=-Lsin(0)+x,cos(0)=x,| [v(0)=v,cos(0)—x,wsin(0)=v,| (checks)

2

a(0) = —v, @ sin(0) — x,@” cos(0) = —x,@

(d) If v,=0, the velocity and acceleration of the mass are v(t):—xoa)sin(a)t) and

a(t) =—-x,0° cos(w1)|. The position has a maximum or minimum at times 7 when the velocity

v(t)=0. So, the position will be a maximum or minimum when @f=nx or |f=nrx/w

(n=0,1,2,...). The results are summarized in the following table.

n W(£) a(f) Type
0,2,4,... | zero | negative | maximum
1,3,5,... | zero | positive | minimum

The figure below shows the position, velocity, and acceleration functions for x, =0.25 (ft) and
w=27/3 (rad/s). When the velocity is zero, the displacement is either a maximum or minimum.

It is a maximum when the acceleration is negative, and it is a minimum when the acceleration is

positive (as indicated in the table above).
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Position, Velocity, and Acceleration of Mass
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Figure 4. Position, Velocity, and Acceleration of Mass Due to Initial Displacement

Example 5: Over-damped, free vibration

Given: In response to the initial conditions x, =0.25 (ftyand | Equilibrium
Position

v, =5 (ft/s), the over-damped spring-mass-damper -1

system has displacement X
_v .

x(t) =(0.5163) e —(0.2663) e (f1)

Find: (a) the velocity function v(¢) = x(¢) ; (b) the acceleration function a(z) =v(¢) =x(¢) ; (c)
x(0), v(0), and a(0), the position, velocity and acceleration of the mass at £ =0; and (d) find

the time when the displacement is maximum.

Solution:
(a) Using rules 1 and 2, we find v(¢)

(1) =X(t) = %((0.5 163)e™ — (0.2663)e ™)

=%[(0.5163) e ] —%[(0.2663)526"8’]

= (0.5163)(=3.82) %" — (0.2663)(—26.18)e '™
W(t) =—1.9723¢>% +6.9717 "™ (ft/s)
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(b)Using rules 1 and 2 again, we find a(¢)

a(t)=x)=v(t)= %[_1'97236—3.8% + 6.97176—26,18t:|

= (-1.9723)(-3.82)¢ * + (6.9717)(~26.18)e ¥

a(t)=7.5342e>% —182.52¢ % (fi/s?)

(c) [x(0) =((0.5163)¢’ —(0.2663)¢" ) =0.5163 - 0.2663 = 0.25 (ft)| (checks)

w(0)=—1.9723¢" +6.9717¢’ =6.9717 —1.9723 =4.9994 ~ 5 (ft/s)| (checks)

a(0)=7.5342¢" —182.52¢" =7.5342 —182.52 ~ —175 (ft/s*)

(d) To find the time when the displacement is maximum, we set dx(¢)/dt =v(¢) =0.

V() =-1.9723¢7 4697177 =0 = 6.9717¢ "™ =1.9723¢7**

~3.82¢
6.9717 :3.5348=e—=€22'36t :>ln(3,5348):1n(€22'36t)=22-36t

1.9723 e 2

t =1n(3.5348)/22.36 =0.0565 (sec)

x(0.0565) = (0.5163)e > —(0.2663)¢ " = 0.355 (ft)

a(0.0565) =7.5342¢7 "% —182.52¢74"”* = —35.5 (ft/s*)| (indicates maximum)

Free Response of Overdamped Spring-Mass-Damper System

0.4 T
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X 0.0565
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Figure 5. Response of Overdamped Spring-Mass-Damper System
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Example 6: Under-damped, free vibration

Given: In response to the initial conditions x,=0.25 (ft) and
v, =5 (ft/s), the wunder-damped spring-mass-damper

system has displacement

xX(t)=e™ [0.7217 sin(«/75 1) +0.25 cos (75 tﬂ (ft)

Equilibrium
Position k I:

G o
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—Y— m

Free Response of Underdamped Spring-Mass-Damper System
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Figure 6. Response of Underdamped Spring-Mass-Damper System

Find: (a) the velocity function v(¢) = x(¢), (b) the acceleration function a(z) =v(¢) = x(¢), and

(¢) x(0), v(0), and a(0), the position, velocity and acceleration of the mass at #=0.

Solution:

(a) Using rules 2, 3 and 4, we find the velocity function v(¢)
V(1) = x(1)

:i(e—” [0.7217 sin(ﬁ t)+ 0.25 COS(J% ! )J)

dt

:di(e-sf)x [0.7217 sin(V/75 £)+0.25 cos (V75 t)}

t

N e_s,( d [0.7217 sin (/75 ) +0.25 cos (/75 ¢ )D

di
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- —55”[0.7217 sin(«/75 1) +0.25 cos(v/75 t)]
5’((0 T217W75 cos (V75 1)~ (0.25)75sin (/75 1 ))
—e [—((5 x0.7217) +(0.25x/75) )sin(v/75 t)}
[((o 7217475 ) - (5><O25))cos(\/_t)}

—()=¢" [57736sm(J_ {)+5cos(V75 r)} (ft/s)

(b)Using rules 2, 3 and 4, we find the acceleration function a(z)

a(t) =%(t) =v(t)
:%(6—5{_5.7736sin(ﬁ t)+5cos(V75 1 )})

=i(e_5’)>< [—5.7736 sin(\/% t) +5 COS(\/% t)}

dt

o (di[—s.7736 sin (/75 t)+5 cos(/75 ¢ )D

5‘“[ 57736sm(\/_t)+5005(\/—tﬂ
(( ~5.7736\/75 ) cos (/75 ) - (5)\75sin (\/75 t))
—e ™ [((5><5.7736) ~(5375))sin (/75 t)}
e‘S’[—((5.7736\/ﬁ)+(5x 5))cos(\/ﬁt)}

=la(t)=—e 5’[14 4351n(\/_t)+75005(\/_t)} (ft/s?)

(©) |x(0)=€"[0.7217 sin(0)+0.25 cos(0) | = 0.25 (ft)| (checks)

v0)=¢’ [—5.7736 sin(0)+ SCOS(O)] =5 (fi/s)| (checks)

a(0)=—¢"[ 14.43sin(0) + 75cos(0) | =75 (ft/s’)

At time ¢ =0, the mass is moving downward at 5 (ft/s), but it is slowing down at a rate of

75 (ft/s*). According to Figure 6, the mass reaches a zero downward velocity at about
t ~0.082 (sec).
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