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Elementary Engineering Mathematics 
The Derivative of a Function as a Function 

 Previously, we learned about the meaning of the derivative of a function ( )f x  at some 

arbitrary point 0x . The derivative 0( )f x  is simply the slope of the tangent line at 0x . We now 

consider the function ( )f x  or  df
x

dx
 which consists of the derivatives of ( )f x  at all points 

within the range of x . The following table gives the derivatives of some common functions used 

in engineering. 

Name Function, ( )f x  Derivative,  ( )
d f

f x x
d x

   

Constant a  0 

Polynomial terms na x  1nna x   

Exponential a xe  
a xae  

Sine  sin a x   cosa a x  

Cosine  cos a x   sina a x  
 

To evaluate the derivative at some point 0x , we can simply evaluate the derivative function ( )f x  

at 0x . 

 These results can be extended to combinations of functions by using the following rules for 

differentiation. 

 Name Formula 

1 Summation rule  ( ) ( ) ( ) ( )
d

f x g x f x g x
dx

     

2 Multiplication by a constant, a   ( ) ( )
d

a f x a f x
dx

  

3 Product rule  ( ) ( ) ( ) ( ) ( ) ( )
d

f x g x f x g x f x g x
dx

    

4 Chain rule  ( ( )) ( )
d df dy df

f y x y x
dx dy dx dy

   
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Example 1: 

Given:  The path of a golf ball as a function of horizontal position 

   
2

3 2( ) 73.54 16.1 1.1917 4.2278 10
61.71 61.71

x x
y f x x x           

   
 (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Recall that the velocity of the ball is in the direction of the tangent line. 

Find: (a) The derivative function ( )f x , (b) the derivative at 0 50 (ft)x x   and 

0 200 (ft)x x  , (c) the maximum height of the ball, (d) a plot of function ( )f x , and  

(e) the second derivative function ( )f x df dx  .   

Solution: 

(a) Using rule 1 above, we can find the derivative function ( )f x . 

  

       
     

 

3 2 3 2

3 2

3

( ) 1.1917 4.2278 10 1.1917 4.2278 10

1.1917 4.2278 10

(1.1917 1) 4.2278 10 (2 )

d d d
f x x x x x

dx dx dx
d d

x x
dx dx

x

 





      

  

   
 

or 

   3( ) 1.1917 8.4556 10f x x     (2) 

 

Figure 1. Height of Golf Ball as a Function of Distance, x 
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(b) We can use the derivative function in Eq. (2) to find the derivative of the quadratic function 

at any point in the domain of x . 

  At 0 50 (ft)x x  :  3

50
( ) 1.1917 8.4556 10 (50) 0.76892 0.769

x
f x 


        

  At 0 200 (ft)x x  :  3

200
( ) 1.1917 8.4556 10 (200) 0.49942 0.499

x
f x 


          

(c) The maximum height of the ball occurs where the slope of the tangent line is zero. 

   3ˆ ˆ ˆ( ) 0 1.1917 8.4556 10 1.1917 8.4556 3 140.94 (ft)f x x x e           

   3 2
max maxˆ ˆ ˆ( ) 1.1917 4.2278 10 83.977 84 (ft)y f x x x y         

(d) The plot of ( )f x  indicates that the slope of ( )f x  is positive over the first half of the range of 

x , negative over the second half, and zero at the maximum height of the ball. This confirms 

the fact that the function reached a maximum at this point, and not a minimum. When ( )f x  

is positive, ( )f x  is increasing, and when ( )f x  is negative, ( )f x  is decreasing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(e) Using rule 1,  3 3( ) 1.1917 8.4556 10 8.4556 10 0
d

f x x
dx

           . This again 

confirms that the function is maximum at this point. If ˆ( ) 0f x  , the function is at a local 

maximum, and if ˆ( ) 0f x  , the function is at a local minimum.  
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Figure 2. Slope of the Path of the Golf Ball as a Function of  
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Example 2: 

Given:  The height of a golf ball as a function of time 2( ) 73.54 16.1y f t t t    

 
 
 
 
 
 
 
 
 
 
 
 

 

Find: (a) the derivative function ( )f t , (b) the slope of ( )f t  at 0.5 (sec)t  , and (c) the time t̂  

when the ball reaches maximum height. 

Solution: 

 (a) We can again use rule 1 to find ( )f t . 

       ( ) 73.54 1 16.1 2 73.54 32.2
dy

f t t t
dt

       

 (b) When 0.5 (sec)t  ,  0.5
0.5

( ) 73.54 32.2 0.5 57.44 (ft/sec)
t

t

dy
f t

dt 


     . This is the 

velocity of the ball in the Y-direction at this instant. 

 (c) To find time t̂ , we set ˆ( ) 0f t  , and solve  

  ˆ ˆ ˆ( ) 0 73.54 32.2 73.54 32.2 2.2839 2.28 (sec)f t t t         

  

Figure 3. Height of the Ball as a Function of Time 
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Example 3: 

Given: The horizontal position and height of a golf ball are functions of time 

  ( ) 61.71x t t    2( ) 73.54 16.1y t t t    (3) 

Find: The velocity vector of the ball when 0 50 (ft)x x  . 

Solution: 

 The components of the velocity of the ball in the X and Y directions are given by the derivatives 

of Eqs. (3) with respect to time. We must first find the time t̂  required to get to 0 50 (ft)x x  . 

   ˆ ˆ ˆ( ) 50 61.71 50 / 61.71 0.81024 (sec)x t t t      

  ( ) ( ) 61.71 (1) 61.71 (ft/sec)x

dx
v t x t

dt
       (same at all t)  

  
( ) ( ) 73.54 32.2

ˆ( ) 73.54 (32.2 0.81024) 47.45 (ft/sec)

y

y

dy
v t y t t

dt

v t

   

    


 

So, at 0 50 (ft)x x  , we have 61.71 47.45  (ft/sec)v i j 
  

  

 
Example 4:  Undamped, free vibration 

Given: In response to the initial position 0x  and initial velocity 0v , 

the undamped spring-mass-damper system has displacement 

function 

     0
0( ) sin cos

v k
mx t t x t       

Find: (a) the velocity function ( ) ( )v t x t  , (b) the acceleration function ( ) ( ) ( )a t v t x t   ,  

(c) (0)x , (0)v , and (0)a , the position, velocity and acceleration of the mass at 0t  , and 

(d) the times when ( )x t  has a maximum or minimum if 0 0v  , and verify which are 

maxima and which are minima. 

  

37.56o 
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Solution: 

(a) Using rules 1 and 2: 

  
       0 0

0 0

0

( ) ( ) sin cos sin cos
v v

v

d d d
v t x t t x t t x t

dt dt dt



                 





    0cos sint x t  
 

  
   0 0( ) cos sinv t v t x t     

(b) Again, using rules 1 and 2: 

  
   

   

0 0

0 0

( ) ( ) ( ) cos sin

cos sin

d
a t x t v t v t x t

dt
d d

v t x t
dt dt

  

  

     

       

 
 

     2
0 0( ) sin cosa t v t x t       

(c)     0 0
0(0) sin 0 cos 0

v
x x x        0 0 0(0) cos 0 sin 0v v x v     (checks) 

     2 2
0 0 0(0) sin 0 cos 0a v x x        

(d) If 0 0v  , the velocity and acceleration of the mass are  0( ) sinv t x t    and 

 2
0( ) cosa t x t   . The position has a maximum or minimum at times t̂  when the velocity 

ˆ( ) 0v t  . So, the position will be a maximum or minimum when t̂ n   or t̂ n    

( 0,1,2,...)n  . The results are summarized in the following table. 

n ˆ( )v t  ˆ( )a t  Type 

0,2,4, zero negative maximum 

1,3,5, zero positive minimum 
 

The figure below shows the position, velocity, and acceleration functions for 0 0.25 (ft)x   and 

2 3 (rad/s)  . When the velocity is zero, the displacement is either a maximum or minimum. 

It is a maximum when the acceleration is negative, and it is a minimum when the acceleration is 

positive (as indicated in the table above). 
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Example 5:  Over-damped, free vibration 

Given: In response to the initial conditions 0 0.25 (ft)x  and 

0 5 (ft/s)v  , the over-damped spring-mass-damper 

system has displacement 

     3.82 26.18( ) 0.5163 0.2663  (ft)t tx t e e    

Find:  (a) the velocity function ( ) ( )v t x t  ; (b) the acceleration function ( ) ( ) ( )a t v t x t   ; (c) 

(0)x , (0)v , and (0)a , the position, velocity and acceleration of the mass at 0t  ; and (d) find 

the time when the displacement is maximum. 

Solution: 

 (a) Using rules 1 and 2, we find ( )v t  

  

 3.82 26.18

3.82 26.18

3.82 26.18

( ) ( ) (0.5163) (0.2663)

(0.5163) (0.2663)

(0.5163)( 3.82) (0.2663)( 26.18)

t t

t t

t t

d
v t x t e e

dt
d d

e e
dt dt

e e

 

 

 

  

       

   



   

  3.82 26.18( ) 1.9723 6.9717  (ft/s)t tv t e e     
 

Figure 4. Position, Velocity, and Acceleration of Mass Due to Initial Displacement 
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 (b) Using rules 1 and 2 again, we find ( )a t  

  
3.82 26.18

3.82 26.18

( ) ( ) ( ) 1.9723 6.9717

( 1.9723)( 3.82) (6.9717)( 26.18)

t t

t t

d
a t x t v t e e

dt

e e

 

 

      

    

 
 

  3.82 26.18 2( ) 7.5342 182.52  (ft/s )t ta t e e    

 (c)  0 0(0) (0.5163) (0.2663) 0.5163 0.2663 0.25 (ft)x e e      (checks) 

  0 0(0) 1.9723 6.9717 6.9717 1.9723 4.9994 5 (ft/s)v e e        (checks) 

  0 0 2(0) 7.5342 182.52 7.5342 182.52 175 (ft/s )a e e       

 (d) To find the time when the displacement is maximum, we set ( ) ( ) 0dx t dt v t  . 

     
 

3.82 26.18 26.18 3.82

3.82
22.36 22.36

26.18

( ) 1.9723 6.9717 0 6.9717 1.9723

6.9717
3.5348 ln 3.5348 ln 22.36

1.9723

ln 3.5348 22.36 0.0565 (sec)

t t t t

t
t t

t

v t e e e e

e
e e t

e

t

   





     

      

 

 

  0.21583 1.4792(0.0565) (0.5163) (0.2663) 0.355 (ft)x e e     

  0.21583 1.4792 2(0.0565) 7.5342 182.52 35.5 (ft/s )a e e      (indicates maximum)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

x(
t)

 (
ft

)

Figure 5. Response of Overdamped Spring-Mass-Damper System 
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Example 6:  Under-damped, free vibration 

Given: In response to the initial conditions 0 0.25 (ft)x   and 

0 5 (ft/s)v  , the under-damped spring-mass-damper 

system has displacement 

     5( ) 0.7217 sin 75 0.25 cos 75  (ft)tx t e t t      

 

 

 

 

 

 

 

 

 

 

 

 

Find: (a) the velocity function ( ) ( )v t x t  , (b) the acceleration function ( ) ( ) ( )a t v t x t   , and 

(c) (0)x , (0)v , and (0)a , the position, velocity and acceleration of the mass at 0t  .  

Solution: 

 (a) Using rules 2, 3 and 4, we find the velocity function ( )v t  

  

    
     

   

5

5

5

( ) ( )

0.7217 sin 75 0.25 cos 75

0.7217 sin 75 0.25 cos 75

0.7217 sin 75 0.25 cos 75

t

t

t

v t x t

d
e t t

dt
d

e t t
dt

d
e t t

dt









   

    

      






 

Figure 6. Response of Underdamped Spring-Mass-Damper System 
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   
    

   
    

5

5

5

5

5 0.7217 sin 75 0.25 cos 75

(0.7217) 75 cos 75 (0.25) 75sin 75

(5 0.7217) (0.25 75) sin 75

0.7217 75 (5 0.25) cos 75

t

t

t

t

e t t

e t t

e t

e t









    

 

      
     

 

     5( ) 5.7736sin 75 5cos 75  (ft/s)tv t e t t        

 

 (b) Using rules 2, 3 and 4, we find the acceleration function ( )a t  

  

    
     

   
   

      

5

5

5

5

5

5

( ) ( ) ( )

5.7736sin 75 5cos 75

5.7736 sin 75 5 cos 75

5.7736 sin 75 5 cos 75

5 5.7736 sin 75 5 cos 75

5.7736 75 cos 75 (5) 75 sin 75

(5 5.773

t

t

t

t

t

t

a t x t v t

d
e t t

dt
d

e t t
dt

d
e t t

dt

e t t

e t t

e













 

    

     

       
     

  

 

 

   
    5

6) (5 75) sin 75

5.7736 75 (5 5) cos 75t

t

e t

  
        

     5 2( ) 14.43sin 75 75cos 75  (ft/s )ta t e t t        

(c)     0(0) 0.7217 sin 0 0.25 cos 0 0.25 (ft)x e       (checks) 

     0(0) 5.7736sin 0 5cos 0 5 (ft/s)v e        (checks) 

     0 2(0) 14.43sin 0 75cos 0 75 (ft/s )a e        

At time 0t  , the mass is moving downward at 5 (ft/s) , but it is slowing down at a rate of 
275 (ft/s ) . According to Figure 6, the mass reaches a zero downward velocity at about 

0.082 (sec)t  . 


