
 Kamman – Introductory Control Systems – Proportional Position Control of a Spring-Mass-Damper – page: 1/3

Introductory Control Systems 
Proportional Position Control of a Spring-Mass-Damper (SMD) 

o Fig. 1 shows a spring-mass-damper system with a 

force actuator for position control. The spring has 

stiffness k , the damper has coefficient b , the block 

has mass m , and the position of the mass is measured 

by the variable x . 

o The transfer function of the SMD: input is actuating 

force aF  and output is position x  
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o This is a second-order transfer function that may be over-damped, under-damped, or critically 

damped depending on the values of the parameters m , b , and k .  

o Assuming ideal actuator and sensor responses, the closed-loop position control of the SMD 

can be described using the following block diagram. Here, dX  represents the desired position, 

X  represents the actual position, and ( )cG s  represents the transfer function of the controller. 

 

 

 

 
 
o If simple proportional control is used, then ( )cG s K . Using block diagram reduction, the 

transfer function for this case is found to be 
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o The closed-loop system is also a second-order system, but it is not quite the same as the open-

loop system. Using Eq. (2), the following observations can be made. 

  

Figure 1. Spring-Mass-Damper System  
    with Force Actuator 
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o Observations:  

1. The “stiffness” of the closed-loop system is ( )k K k   for all positive gains K . 

However, the “mass” and “damping” coefficients are the same as for the open-loop SMD. 

This will give the closed-loop system a higher natural frequency n . 

2. The damping ratio   of the closed-loop system is smaller than that of the open-loop 

system, because the product  2 /n b m   is the same for both systems, and n  is higher 

for the closed-loop system. 

3. For a unit step command, the final value of ( )x t  is  
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o The general conclusion here is that proportional control can be used to alter the system’s 

response. The question is whether the altered response is an acceptable response. To examine 

this question, consider the following example. 

Example:  1 slugm  , 8.8 (lb-s/ft)b  , and 40 (lb/ft)k   

o Using these values, the natural frequency and damping ratio of the open-loop system are 

40 6.325 (rad/s) 1 (Hz)n     and 8.8
2 40

0.696 0.7    . 

o The following table lists the natural frequencies, damping ratios, and final values of the 

closed-loop system to a unit step input for various values of controller parameter K . 

 

 

Gain, K  
Natural Frequency 

 (rad/s)n , (Hz) 
Damping Ratio 

  
Final Value to 

a Unit Step 

100 11.83, 1.88 0.37 0.71 
500 23.24, 3.7 0.19 0.93 
1000 32.25, 5.13 0.14 0.96 
2000 45.17, 7.19 0.1 0.98 

 

o Note that the values shown in the table corroborate the observations listed above. 

Unfortunately, for this system, when the gain K  is high enough to produce a final value close 

to one, the damping ratio is quite small. So, proportional control is not necessarily a good 
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choice for this system. As will be seen later in these notes, the addition of integral and 

derivative terms to the controller make for a better closed-loop response. 

o Fig. 2 below shows the closed loop step response of the closed-loop system for gains K  of 

100, 500, and 2000. Note, as expected, that as K  increases, the frequency of response and 

final value both increase, and the damping ratio decreases. 

 

Figure 2. Step Response of the Closed-Loop System for Various Gains 


