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Elementary Engineering Mathematics 
Applications of Derivatives in Statics, Mechanics of Materials 

Example #1 

 Consider a long slender beam of length L  

with a concentrated load P  acting at distance 

a  from the left end. Due to this load, the beam 

experiences an internal bending moment 

( )M x  and internal shearing force ( )V x . As 

presented in earlier notes, the bending 

moment is zero at both ends of the beam and 

rises linearly from there to a maximum value 

at x a . The shearing force is the derivative 

of the bending moment. 

  
( )

( ) ( )
dM x

V x M x
dx

   

Given: 100 (lbs)P  , 5 (ft)L  , 3.5 (ft)a  , 

and maxM abP L  

Find: (a) ( )M x  for 0 x L  ;  (b) ( )V x  for 

0 x L  ; and (c) plot the functions. 

Solution:   max (3.5)(1.5)100 5 105 (ft-lb)M abP L    

 (a) For  0 x a  , the slope is    105 0 3.5 0 30 (ft-lb/ft)m     . 

  ( ) 30   (ft-lb)M x x   

 For  a x L  , the slope is    0 105 5 3.5 70 (ft-lb/ft)m      . Using the point-slope 

form 

      105 70 3.5 ( ) 350 70  (ft-lb)M x M x x        

 (b) For  0 x a  ,  ( ) ( ) 30 30 (lb)
d

V x M x x
dx

    
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  For  a x L  ,      ( ) ( ) 350 70 350 70 70 (lb)
d d d

V x M x x x
dx dx dx

         

(c) Plot of the shear force and bending moment along the beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question: What is the value of ( )M x  at 3.5 (ft)x  ? 

Example 2: 

Given:  10 (ft)L  , 100 (lb/ft)w  , and 

 2( ) 500 50  (ft-lb)M x x x    0 x L   

Find: (a) shearing force ( )V x ; (b) maximum 

bending moment and its location; and  

(c) plot ( )M x  and ( )V x . 

Solution: 

 (a) For  0 x L   

        2 2( ) ( ) 500 50 500 50 500 100  (lb)
d d d

V x M x x x x x x
dx dx dx

         

(b) Because the shearing force is continuous, the bending moment is a maximum (or 

minimum) either at an end of the beam or where the shear zero. 

M
 (

ft
-lb

) 
or

 V
 (

lb
)
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  ( ) ( ) 500 100 0 500 100 5 (ft)V x M x x x        

  (0) ( ) 0M M L   and    2
max( 5) 500 5 50 5 1250 (ft-lb)M x M        

 To verify that it is a maximum, check the sign of ( )M x : 

   ( ) 500 100 100 0
d

M x x
dx

       (it is a maximum) 

(c) Plot of the shear force and bending moment along the beam. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Example 3: 

 Consider a cantilevered beam with a 

uniformly distributed load of w (lb/ft). If the 

beam is cut at a distance x from the wall, we 

expose the internal shearing force V and 

bending moment M. 

Given:  10 (ft)L  , 100 (lb/ft)w  , and 

 2 21 1
2 2( )  (ft-lb)M x wx wL x wL     

Find: (a) the shearing force ( )V x ; (b) the 

maximum bending moment and its location; 

and (c) plot ( )M x  and ( )V x . 

M
 (

ft
-lb

) 
o

r 
V

 (
lb

)
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Solution: Using the values for L and w, 2( ) 50 1000 5000 (ft-lb)M x x x     

 (a)  2( ) ( ) 50 1000 5000 1000 100  (lb)
d

V x M x x x x
dx

        

 

(b) Again, the shearing force is a continuous function, so the bending moment is a maximum 

(or minimum) either at an end of the beam or where the shear zero. 

  ( ) ( ) 1000 100 0 1000 100 10 (ft)V x M x x x        (at the end) 

  max(0) 5000 (ft-lb) (10) 0 (ft-lb) 5000 (ft-lb)M M M       

In this case, the maximum occurs at the left end of the beam, and not where ( ) 0M x  , 

because our concern is with the absolute value of the bending moment. We must design the 

beam to withstand 5000 (ft-lb) of bending moment, not zero. 

(c) Plot of the shear force and bending moment along the beam. 

 
 

  

M
 (

ft
-l

b)
 o

r 
V

 (
lb

)
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Example 4: 

 Consider a bar with rectangular 

cross-sectional area A and applied 

force P as shown. Because A is 

perpendicular (or normal) to the 

direction of P, the material on A 

experiences normal stress only and is 

defined as 

  P A   

Now consider a plane at an angle   to the vertical. Since this plane is not normal to P, the material 

along this plane experiences both normal stress and shear stress. 

 The normal stress   is defined as the ratio of the normal force and the area. The shear stress 

  is defined as the ratio of the tangential force and the area. 

 2cos( )
cos ( )

cos( ) cos( )
nF P P

A A A

 
 

     
 

   
sin( )

sin( )cos( )
cos( ) cos( )

tF P P

A A A

  
 

     
 

 

In a simple tension test, such as that described above, brittle materials tend to fail due to excessive 

normal stress, and ductile materials tend to fail due to excessive shear stress. 

 By thinking of the normal and shear stresses as functions of the cut angle  , we can find which 

planes experience the highest normal and shear stresses. We can find maxima and minima by 

setting 0d d    and 0d d    and then solving for the angle  . Using the product and chain 

rules gives 

        2cos ( ) 2cos( ) sin( ) 2 sin( )cos( )
d

d d P A P A P A
d

      

        

     22 2 22 sin( )cos( ) 2 sin ( ) cos ( )
d

d d P A P A
d

     


       

      2 2sin( )cos( ) cos ( ) sin ( ) cos(2 )
d

d d P A P A P A
d

      


          
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      

 

2 2 cos(2 ) sin(2 ) 2

2 sin(2 )

d
d d P A P A

d
P A

   




        

 
 

Setting the derivatives to zero and considering 0 2   , we get the following results. 

Stress Angle,   1st Derivative 2nd Derivative Type 

  0 0 negative maximum 

  o4  (rad) 45   0 negative maximum 
 

So, brittle materials will be more likely to fail on a plane normal to the load, and ductile materials 

will be more likely to fail on a 45o plane. 

 

 


