Elementary Engineering Mathematics
Applications of Derivatives in Statics, Mechanics of Materials

Example #1

Consider a long slender beam of length L
with a concentrated load P acting at distance

a from the left end. Due to this load, the beam

experiences an internal bending moment

M (x) and internal shearing force V(x). As

presented in earlier notes, the bending

moment is zero at both ends of the beam and
rises linearly from there to a maximum value

at x =a. The shearing force is the derivative

of the bending moment.

_dM(x)

V(x) =M'(x)

Given: P=100 (Ibs), L=5 (ft), a=3.5(fr), | Mo =7 7 7
and M__ =abP/L
Find: (a) M(x) for 0<x<L; (b) V(x) for

wrk

0<x<L;and (c) plot the functions.

Solution: M__ =abP/L=(3.5)(1.5)100/5 =105 (ft-Ib)
(a) For (O <x< a) , the slope is |m = (105 — O)/(3.5 — O) =30 (ft-1b/ft)|.

M (x)=30x (ft-Ib)

For (a <x< L), the slope is |m = (O —105)/(5 - 3.5) =70 (ft-1b/ft)|. Using the point-slope

form
(M —105)=-70(x-3.5) = |M(x)=350—70x (ft-lb)

(b)For (0<x<a), |V(x)=M'(x)= di(3ox) =30 (Ib)
X
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d d d
For (a <x< L), V(ix)=M'(x)= p (350 - 70x) = —(350) + —(—70x) =—70 (Ib)

_x dx dx

(c) Plot of the shear force and bending moment along the beam.

Internal Bending Moment and Shear Force Diagrams
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Question: What is the value of M'(x) at x=3.5 (ft)?

Example 2:
Given: L=10 (ft), w=100 (Ib/ft), and ! T o B
M (x)=500x—50x> (ft-b) (OSxSL) l

Find: (a) shearing force V(x); (b) maximum

bending moment and its location; and

(c) plot M(x) and V' (x).

Solution: | - lDM
(a) For (OSxSL) 7, 4
V(x)=M'(x)= i(soox ~50x7) = i(soox) +i(—50x2) =500 —100x (Ib)
dx dx dx

(b)Because the shearing force is continuous, the bending moment is a maximum (or

minimum) either at an end of the beam or where the shear zero.
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V(x)=M'(x)=500—100x=0 = [x=500/100=5 (f)

M (0)=M(L)=0] and | M (x=5)=(500x5)—(50x5") =1250 (fi-Ib) = M,,,,

To verify that it is a maximum, check the sign of M"(x):

M"(x)= %(500 —100x) =-100< 0] (it is a maximum)

(c) Plot of the shear force and bending moment along the beam.

Internal Bending Moment and Shear Force Diagrams
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Example 3:

Consider a cantilevered beam with a .
uniformly distributed load of w (Ib/ft). If the T

beam is cut at a distance x from the wall, we

w (Ib/ft)

expose the internal shearing force V and X

bending moment M. A l
Given: L =10 (ft), w=100 (Ib/ft), and | w (Ib/ft)

M(x)z—%wx2 +wLx—%wL2 (ft-1b) M, |
C—MDM

Find: (a) the shearing force V' (x); (b) the

maximum bending moment and its location; F,
and (c) plot M (x) and V' (x).
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Solution: Using the values for L and w, |M (x) =—-50x> +1000x — 5000 (ft-Ib)

(a) [V (x) = M'(x) =di(—50x2 +1000.x —5000) =1000 —100x (Ib)
X

(b) Again, the shearing force is a continuous function, so the bending moment is a maximum

(or minimum) either at an end of the beam or where the shear zero.

V(x)=M'(x)=1000—100x=0 = [x=1000/100=10 (ft)| (at the end)

M (0)=—5000 (ft-Ib)] [M(10)=0 (ft-Ib)] = [M__ =—5000 (ft-Ib)

In this case, the maximum occurs at the left end of the beam, and not where M'(x)=0,

because our concern is with the absolute value of the bending moment. We must design the
beam to withstand 5000 (ft-1b) of bending moment, not zero.

(c) Plot of the shear force and bending moment along the beam.
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Example 4:

Consider a bar with rectangular
. . o :

cross-sectional area A4 and applied | P |7 == — — /7)) - — = P
C

force P as shown. Because A4 is Area, 4

perpendicular (or normal) to the T

. : f e e P

direction of P, the material on A4 P
Area, {/—>

experiences normal stress only and is

defined as Area, Afcos (8)

PV

Now consider a plane at an angle @ to the vertical. Since this plane is not normal to P, the material
along this plane experiences both normal stress and shear stress.
The normal stress o is defined as the ratio of the normal force and the area. The shear stress

7 1s defined as the ratio of the tangential force and the area.

__FE,_Pcos(®) (P ___F___ Psin9) (P).
i Afcos(9)  Afcos(0) _(AJCOS @ Afcos(0)  Afcos(0) (AjSm(H)cos(e)

In a simple tension test, such as that described above, brittle materials tend to fail due to excessive
normal stress, and ductile materials tend to fail due to excessive shear stress.

By thinking of the normal and shear stresses as functions of the cut angle &, we can find which
planes experience the highest normal and shear stresses. We can find maxima and minima by

setting do/d6 =0 and dr/d@=0 and then solving for the angle €. Using the product and chain

rules gives

do/do = %[(P/A)cosz(ﬁ)] =(P/A)(2cos(0))(~sin(8)) = —(2P/ 4)sin(0)cos(0)

d’c/do’ = %[—(2P/A)sin(9) cos(0) | =(2P/4)(sin*(0) - cos’(0))

dr/dO = %[(P/A)sin(@) cos(6) | =(P/ 4)| cos*(6) —sin*(6) | = (P/ 4)cos(26)
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d’t/de’ = %[(P/A)cos(%’)] =(P/4)[(-sin(20))(2)]

=(—2P/ A)sin(26)

Setting the derivatives to zero and considering [0 <8 < /2|, we get the following results.

Stress | Angle, 6 1t Derivative | 2" Derivative Type

o 0 0 negative maximum

T 7/4 (rad) = 45° 0 negative maximum

So, brittle materials will be more likely to fail on a plane normal to the load, and ductile materials

will be more likely to fail on a 45° plane.
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