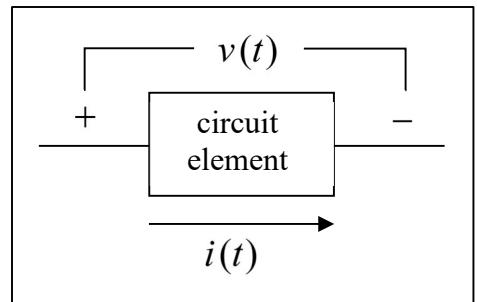


Elementary Engineering Mathematics

Application of Derivatives in Electrical Engineering

The diagram shows a typical element (resistor, capacitor, inductor, etc.) in an electrical circuit. Here, $v(t)$ represents the voltage across the element, and $i(t)$ represents the current flowing through the element. Both generally are functions of time, t . For any such element, the following equations apply.



$$v(t) = \frac{dw}{dq} \quad \begin{cases} v(t) \text{ is the voltage (volts)} \\ w(t) \text{ is the energy (joules)} \\ q(t) \text{ is the charge (coulombs)} \end{cases}$$

$$i(t) = \frac{dq}{dt} \quad \begin{cases} i(t) \text{ is the current (amps)} \\ t \text{ is the time (sec)} \end{cases}$$

$$p(t) = \frac{dw}{dt} = \left(\frac{dw}{dq} \right) \left(\frac{dq}{dt} \right) = v(t) \cdot i(t) \quad \{ p(t) \text{ is the power (joules/sec) or (watts)} \}$$

This last equation is an application of the **chain rule**.

Example 1:

Given: The **charge** and **voltage** for a given circuit element are given by the following equations:

$$q(t) = \frac{1}{50} \sin(250\pi t) \text{ (coulombs)} \quad \text{and} \quad v(t) = 100 \sin(250\pi t) \text{ (volts)}$$

Find: a) $i(t)$ the **current** passing through the element, b) $p(t)$ the **power** dissipated by the element, and c) p_{\max} the **maximum power** dissipated by the element.

Solution:

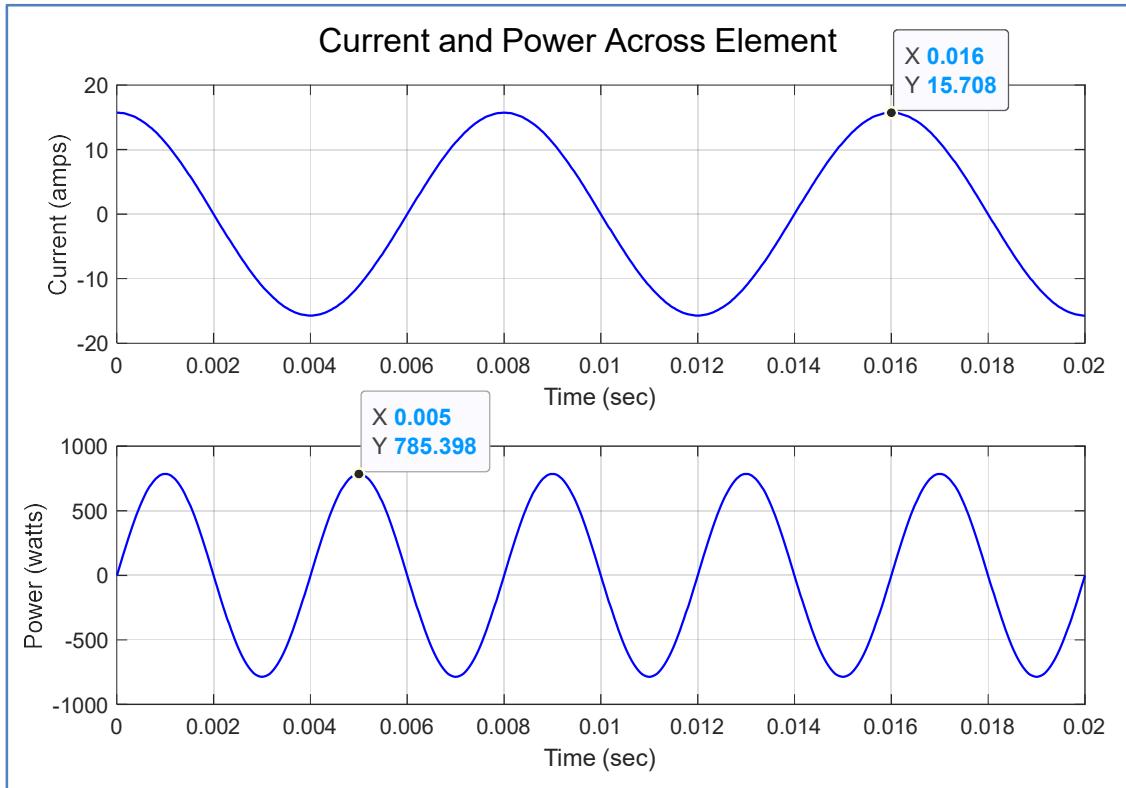
a) $i(t) = \frac{dq}{dt} = \frac{d}{dt} \left(\frac{1}{50} \sin(250\pi t) \right) = \frac{1}{50} \times 250\pi \cos(250\pi t) = 5\pi \cos(250\pi t) \text{ (amps)}$

b) $p(t) = v(t) \cdot i(t) = (100 \sin(250\pi t)) (5\pi \cos(250\pi t))$
 $= 500\pi \sin(250\pi t) \cos(250\pi t) \text{ (watts)}$

c) To find maximum power, we use the **trigonometric identity**: $2\sin(\theta)\cos(\theta) = \sin(2\theta)$

$$p(t) = 500\pi \sin(250\pi t) \cos(250\pi t) = \frac{1}{2} (500\pi \sin(500\pi t)) = 250\pi \sin(500\pi t) \text{ (watts)}$$

$$\Rightarrow p_{\max} = 250\pi \approx 785 \text{ (watts)}$$



Current–Voltage Relationships for Resistors, Capacitors, and Inductors

The voltage across and the current through a **resistor** are related simply by its resistance.

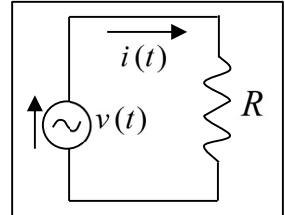
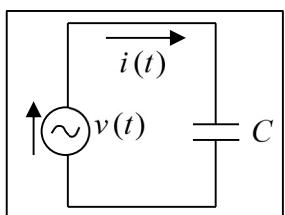
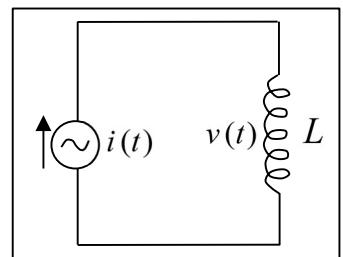
$$v(t) = R i(t) \quad \text{or} \quad i(t) = v(t)/R$$

Given a voltage $v(t)$ applied to a **capacitor**, the corresponding current $i(t)$ can be calculated as

$$i(t) = C \frac{dv}{dt}$$

Given the current $i(t)$ passing through an **inductor**, the corresponding voltage $v(t)$ can be calculated as

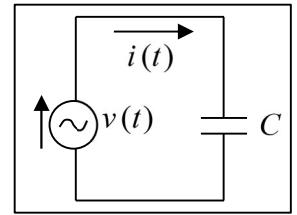
$$v(t) = L \frac{di}{dt}$$



Example 2:

Given: A voltage $v(t) = 110\cos(120\pi t)$ (volts) is applied to a capacitor with $C = 100 \mu\text{F}$.

Find: a) $i(t)$ the current through the capacitor, and b) p_{\max} the maximum power.



Solution:

a) The current can be found by differentiating the voltage.

$$\begin{aligned} i(t) &= C \frac{dv}{dt} = (100 \times 10^{-6}) \frac{d}{dt} (110 \cos(120\pi t)) \\ &= (100 \times 10^{-6}) (110) (120\pi) (-\sin(120\pi t)) \\ &= \boxed{-4.147 \sin(120\pi t) \text{ (amps)}} \end{aligned}$$

$$\begin{aligned} \text{b) } p(t) &= v(t) \cdot i(t) = (110 \cos(120\pi t)) (-4.147 \sin(120\pi t)) \\ &= -456 \sin(120\pi t) \cos(120\pi t) \\ &= -456 \times \frac{1}{2} \sin(240\pi t) \\ &= \boxed{-228 \sin(240\pi t) \text{ (watts)}} \Rightarrow \boxed{p_{\max} = 228 \text{ (watts)}} \end{aligned}$$

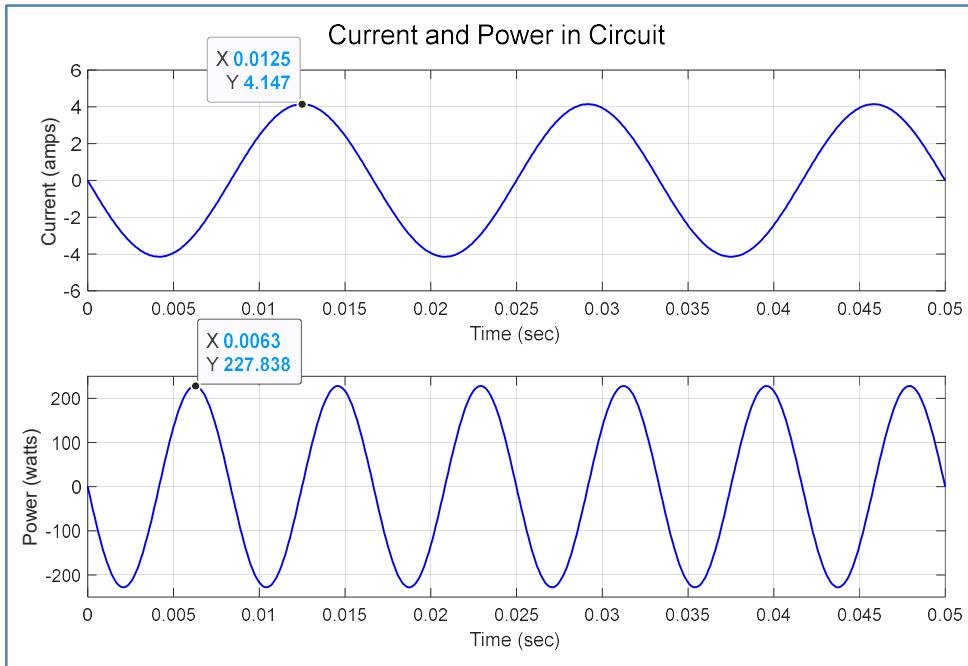
Alternate Solution for part (a): (without using derivatives)

We could have solved this problem using **complex numbers**.

$$\begin{aligned} Z_C &= -j/\omega C = -j/(120\pi)(100 \times 10^{-6}) = -j(10^6)/(120\pi)(100) \\ &\approx -j 26.526 \text{ (ohms)} \approx 26.526 \angle(-90^\circ) \end{aligned}$$

$$\boxed{I \approx \frac{110 \angle(0^\circ)}{26.526 \angle(-90^\circ)} \approx 4.147 \angle(90^\circ)}$$

$$\begin{aligned} \Rightarrow i(t) &\approx 4.147 \cos(120\pi t + 90^\circ) \text{ (amps)} \\ &\approx 4.147 \left(\cos(120\pi t) \underbrace{\cos(90^\circ)}_0 - \sin(120\pi t) \underbrace{\sin(90^\circ)}_1 \right) \\ \Rightarrow \boxed{i(t) \approx -4.147 \sin(120\pi t) \text{ (amps)}} \end{aligned}$$

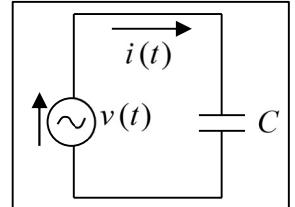


Example 3:

Given: A voltage $v(t) = 110e^{-10t} \cos(120\pi t)$ (volts) is applied to a capacitor with $C = 100 \mu\text{F}$.

Find: $i(t)$, the current through the capacitor

Solution:



To find the current we differentiate the voltage using the product and chain rules.

$$\begin{aligned}
 i(t) &= C \frac{dv}{dt} = (100 \times 10^{-6}) \frac{d}{dt} (110e^{-10t} \cos(120\pi t)) \\
 &= (100 \times 10^{-6})(110) \left[\left(\frac{d}{dt} (e^{-10t}) \times (\cos(120\pi t)) \right) + \left((e^{-10t}) \times \frac{d}{dt} (\cos(120\pi t)) \right) \right] \\
 &= 0.011 \left[(-10e^{-10t} \cos(120\pi t)) + (-120\pi e^{-10t} \sin(120\pi t)) \right] \\
 \Rightarrow i(t) &\approx -0.011e^{-10t} [10\cos(120\pi t) + 120\pi \sin(120\pi t)] \text{ (amps)}
 \end{aligned}$$

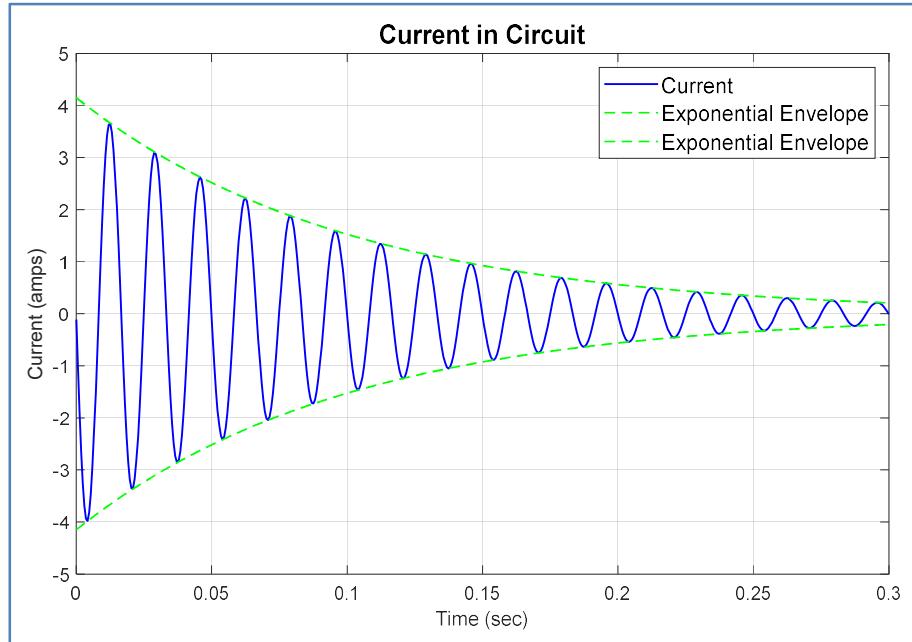
The term in square brackets can be reduced to a **single, phase-shifted sine** or **cosine** function. For example,

$$120\pi \sin(120\pi t) + 10\cos(120\pi t) = M \cos(120\pi t + \phi)$$

where

$$M = \sqrt{(120\pi)^2 + 10^2} \approx 377.1 \quad \text{and} \quad \phi = \tan^{-1}(-120\pi/10) = -88.48^\circ = -1.544 \text{ (rad)}.$$

$$\Rightarrow i(t) \approx -4.15e^{-10t} \cos(120\pi t - 1.544) \text{ (amps)}$$

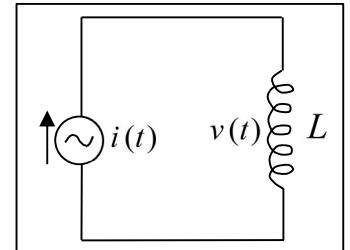


Example 4:

Given: Current $i(t) = 5te^{-10t}$ (amps) is applied to an inductor with $L = 250$ (mh).

Find: $v(t)$, the voltage across the inductor.

Solution:



To find the voltage, we differentiate the current using the product and chain rules.

$$\begin{aligned}
 v(t) &= L \frac{di}{dt} = 0.25 \frac{d}{dt} (5te^{-10t}) = \frac{1}{4} \left(\frac{d}{dt} (5t) \right) (e^{-10t}) + \frac{1}{4} \left((5t) \frac{d}{dt} (e^{-10t}) \right) \\
 &= \frac{1}{4} (5e^{-10t}) + \frac{1}{4} (5t(-10e^{-10t})) = \frac{1}{4} (5e^{-10t} - 50te^{-10t}) \\
 \Rightarrow v(t) &= \boxed{\frac{5}{4} e^{-10t} (1 - 10t) \text{ (volts)}}
 \end{aligned}$$

