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Introductory Control Systems 
Characteristics of Open-Loop and Closed-Loop Systems 

Important Control System Characteristics 

o Sensitivity of system response to parametric variations can be reduced 

o Transient and steady-state responses of a system can be altered 

o Steady-state error can be reduced 

o Response of system to disturbances (disturbance response) can be lowered 

The effects of a control system on the overall response of a dynamic system can be positive 

or negative. It is the responsibility of the analyst to design the control system so it has 

beneficial effects on system performance. 

Parametric Sensitivity: Concept 

 From a mathematical perspective, a dynamic system will have identical responses to 

repeated applications of the same input. The step response of a system as calculated by 

MATLAB, for example, is always the same (unless the transfer function is altered). 

 For real systems, however, this is not the case. Each time a real system is subjected to 

an input, its response will vary. The variations may be small random fluctuations producing 

the same average response, or they may be large fluctuations producing very different 

responses. For example, the effects of friction and damping can easily vary during the day-

to-day operation of a system. 

 To compare the effects of variations on the response of open-loop and closed-loop 

systems, consider the systems shown in Fig. 1. In each system, the transfer function ( )G s  

has been changed to ( ) ( )G s G s  . Here, ( )G s  represents small changes to ( )G s . 

 

 

 

 

 

  

Figure 1. Open-Loop and Closed-Loop Systems with Plant Variations 
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 The algebraic equation associated with the open-loop system is 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Y s Y s G s G s R s G s R s G s R s         

So, changes in the output can be written as 

 ( ) ( ) ( )Y s G s R s    (1) 

The plant changes are clearly passed directly to the system output. 

 The algebraic equation associated with the closed-loop system is 
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So, changes in the output can be approximated as 
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 (2) 

From this result it clear that the amount of ( )G s  that is passed to the output depends on 

the magnitude of the loop (or open-loop) transfer function ( )GH s . The larger the 

magnitude of ( )GH s , the less changes in ( )G s  will affect the system response. 

Sensitivity: Calculation 

 The calculation of sensitivity is done more formally using derivatives. Specifically, TS  

the sensitivity of a system with transfer function ( )T s  to changes in a parameter   is defined 

as follows. 

 T T
S

T



    

 (3) 

Generally, sensitivity is a function of s , and hence a function of frequency. 
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 If the magnitude of TS  is between zero and one  0 1TS  , then the effects of ( )G s  

will be lowered (i.e. 10% changes in ( )G s  will result in less than 10% changes in the 

response). However, if the magnitude of TS  is greater than one  1TS  , then the effects 

of ( )G s  will be magnified (i.e. 10% changes in ( )G s  will result in greater than 10% 

changes in the response). 

 To gain some general insight into the issue of sensitivity for a simple closed-loop system 

(Fig. 2), consider the sensitivity of the system transfer function ( )
1

G
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


 to bulk 

changes in the transfer functions ( )G s  or ( )H s . 
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Using these definitions and the quotient rule for differentiation gives 
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Eq. (4) indicates that as ( )GH s  is increased, the effects on the response of the system to 

changes in ( )G s  are lowered. This is the same conclusion that was drawn from Eq. (2). 

However, Eq. (5) indicates that as ( )GH s  is increased, the effects on the response of the 

system to changes in ( )H s  are passed directly to the output, that is, 1T
HS  . 

 Note also that for an open-loop system with transfer function ( ) ( )T s G s ,  
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Figure 2. Simple Closed Loop System 
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This again indicates that changes in the plant will be passed directly to the output. 

 Although Eqs. (4) and (5) provide general insights into the usefulness of closed-loop 

control, Eq. (3) is used to determine the sensitivity to specific system parameters. For this 

reason, Eq. (3) provides more detailed information about the system at hand. For example, 

in previous notes, the closed-loop transfer function for proportional position control of a 

spring-mass-damper system was found to be 

   2 ( )

K
T s

ms bs k K


  
 

The sensitivity of this system to changes in the damping and spring stiffness parameters can 

be calculated as follows. 
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Control of Transient Response 

 In previous notes the block diagram for the open-loop response of an armature-

controlled DC motor was given. If the electrical response of the motor is much faster than 

the mechanical speed changes, then the time dependence of the circuitry can be ignored. 

Under these conditions, the block diagram reduces to that shown in Fig 3. 
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 As before, the input to the motor is the armature voltage ( )aV s  and the output is the 

angular velocity (speed) of the motor. Using block diagram reduction, the open-loop 

transfer function for this system is found to be 

  
 

**

**

( )

( )
ma a

a b ma aa

K K R Js K

a R c K K R JV s s a

      
 (6) 

The parameters *K  and *a  are constants that depend on the motor characteristics, inertial 

load, and damping coefficient. Note that the value of *a  determines how quickly the motor 

responds when a step increase in voltage is applied to the motor. 

 To study the effects of feedback on transient response, consider proportional, closed-

loop control of the DC motor as shown in Fig 4. The input to the system is the desired 

angular velocity ( )d s  and the output of the system is the actual angular velocity ( )s . 

The parameter tK  is the calibration constant of the tachometer that relates changes in 

angular velocity to changes in voltage. The signal ( )E s  represents a tachometer voltage 

error, and the parameter aK  is the proportional gain. 

 

 

 

 

 
 
The transfer function of the closed-loop system is found using block diagram reduction as 

follows. 
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Figure 3. Block Diagram of an Armature-Controlled DC Motor 
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Figure 4. Proportional Control of a DC Motor Using a Tachometer 
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 The parameter â  determines the speed of response of the closed-loop, speed control 

system. The value of â  can be increased by increasing the proportional gain aK . Note, 

however, that if the value of aK  is increased too much, the voltage input to the motor may 

become too large, potentially damaging the motor. Physical limitations such as these are 

often not part of the mathematical model, so the analyst must be aware of them. 

Control of Steady-State Error 

 Consider again the closed-loop speed control system of Fig. 4. To track the error in the 

system as it responds to a commanded speed change, the error signal ( )E s  is taken to be the 

output of the system as shown in Fig. 5. 

 

 

 

 

 

 

Using block diagram reduction, the system error transfer function is found to be 
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Using the final value theorem, the steady-state error to a unit step, speed change command 

is found to be 
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Figure 5. Error of a DC Motor Speed Control System 
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This result shows that the proportional control gain affects the steady-state error aK . As the 

value of aK  is increased, the value of â  is increased and sse  the steady-state error is 

decreased. 

Control of Disturbance Response 

 Consider the block diagram of an armature-controlled DC motor with a disturbance 

torque ( )DT s  as shown in Fig. 6. It is assumed that the disturbance torque reduces the torque 

generated by the motor under ideal conditions. 

 

 

 

 

 

 

 

To study the effect of the disturbance on the response of this system, the disturbance 

transfer function must be found. One way to do this is to move the disturbance to the left-

most summing block as shown in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
The disturbance transfer function for the open-loop system is then identified to be 
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Figure 6. Block Diagram of an Armature-Controlled DC Motor with Disturbance 
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Figure 7. Block Diagram of a DC Motor with Disturbance Input Only 
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 Following this same approach, the disturbance transfer function of the closed-loop, 

speed control system of Fig. 4 can be found. In that case, to move the disturbance to the left-

most summing block, the disturbance must be additionally moved over the proportional gain 

block as shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
Using block diagram reduction, the disturbance transfer function for the closed-loop, speed 

control system is found to be 
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The steady-state angular velocity change of the motor to a unit step disturbance torque is 

found using the final value theorem. 
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These last two results indicate that as the proportional gain aK  is increased, the disturbance 

response decays faster, and the steady-state angular velocity change is decreased.  Both are 

positive effects. 

Figure 8. Disturbance Input in Speed Control System of a DC Motor 
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