Introductory Control Systems
Characteristics of Open-Loop and Closed-Loop Systems

Important Control System Characteristics

o Sensitivity of system response to parametric variations can be reduced

o Transient and steady-state responses of a system can be altered

o Steady-state error can be reduced

o Response of system to disturbances (disturbance response) can be lowered
The effects of a control system on the overall response of a dynamic system can be positive
or negative. It is the responsibility of the analyst to design the control system so it has
beneficial effects on system performance.

Parametric Sensitivity: Concept

From a mathematical perspective, a dynamic system will have identical responses to
repeated applications of the same input. The step response of a system as calculated by
MATLAB, for example, is always the same (unless the transfer function is altered).

For real systems, however, this is not the case. Each time a real system is subjected to
an input, its response will vary. The variations may be small random fluctuations producing
the same average response, or they may be large fluctuations producing very different
responses. For example, the effects of friction and damping can easily vary during the day-
to-day operation of a system.

To compare the effects of variations on the response of open-loop and closed-loop

systems, consider the systems shown in Fig. 1. In each system, the transfer function G(s)

has been changed to G(s)+ AG(s). Here, AG(s) represents small changes to G(s).
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Figure 1. Open-Loop and Closed-Loop Systems with Plant Variations
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The algebraic equation associated with the open-loop system is
Y(s)+AY(s)= (G(s) + AG(S))R(S) =G(S)R(s)+AG(s)R(s)
So, changes in the output can be written as

AY(s) = AG(s)R(s) (1)

The plant changes are clearly passed directly to the system output.

The algebraic equation associated with the closed-loop system is

G(s)+AG(s)

Y(s)+AY(s)=| — (G(s)+AG(s)) H(s)

R(s)

_ G(s) AG(s)
"\ 1+(G(s) + AG()) H (5) R(S)+[1+(G(S)+AG(S))H(S)]R(S)

| e G(s) jR(s) + [—AG(S) jR(S)
+ GH (s) 1+ GH(s)

AG(s)

1+ GH(s)jR(S)
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So, changes in the output can be approximated as

AG(s)

ij(S) (2)

AY(s) z(

From this result it clear that the amount of AG(s) that is passed to the output depends on
the magnitude of the loop (or open-loop) transfer function GH(s). The larger the
magnitude of GH(s), the less changes in G(s) will affect the system response.

Sensitivity: Calculation

The calculation of sensitivity is done more formally using derivatives. Specifically, S’
the sensitivity of a system with transfer function 7'(s) to changes in a parameter « is defined

as follows.

r_afdl
«-2(Z)

Generally, sensitivity is a function of s, and hence a function of frequency.
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If the magnitude of S| is between zero and one (0 < ‘S 5‘ < 1) , then the effects of AG(s)
will be lowered (i.e. 10% changes in G(s) will result in less than 10% changes in the
response). However, if the magnitude of S’ is greater than one (‘S(f ‘ > 1) , then the effects

of AG(s) will be magnified (i.e. 10% changes in G(s) will result in greater than 10%

changes in the response).

To gain some general insight into the issue of sensitivity for a simple closed-loop system

(Fig. 2), consider the sensitivity of the system transfer function 7'(s)= to bulk
changes in the transfer functi G H(s).
ges in the transfer functions G(s) or H(s) R(s) Y(s)
—(O)— G(s) >
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Figure 2. Simple Closed Loop System

Using these definitions and the quotient rule for differentiation gives

O e s

Si :g(%j:H[y;ﬁ}[&gﬁﬁi GH)J:HGGA;I ©)

Eq. (4) indicates that as |GH (s)| is increased, the effects on the response of the system to

4

changes in G(s) are lowered. This is the same conclusion that was drawn from Eq. (2).
However, Eq. (5) indicates that as |GH (s)| is increased, the effects on the response of the

system to changes in H(s) are passed directly to the output, that is, S;, ~1.

Note also that for an open-loop system with transfer function 7'(s) = G(s),

Sg:ngg(an:I

G\ oG
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This again indicates that changes in the plant will be passed directly to the output.
Although Egs. (4) and (5) provide general insights into the usefulness of closed-loop
control, Eq. (3) is used to determine the sensitivity to specific system parameters. For this
reason, Eq. (3) provides more detailed information about the system at hand. For example,
in previous notes, the closed-loop transfer function for proportional position control of a

spring-mass-damper system was found to be

T(s)

B K
ms” +bs + (k + K)

The sensitivity of this system to changes in the damping and spring stiffness parameters can
be calculated as follows.

ST—éaT—b ms” +bs + (k+K) o K
" T ob K ob\ ms® +bs + (k+K)

ms’ +K) —,K/s
=b
/]( (ms2+ +K)) (ms2+bs+(k+K))

—bs

=S, =—
ms~+bs+(k+K)
ST—ﬁaT—k ms® +bs + (k+K) 0 K
YT ok K Ok \ ms®> +bs + (k+K)

ms’ +K) K
=k
/K/ (msz+ +K)) (ms2+bs+(k+K))

:ms2+bs+(k+K)

Control of Transient Response

In previous notes the block diagram for the open-loop response of an armature-
controlled DC motor was given. If the electrical response of the motor is much faster than
the mechanical speed changes, then the time dependence of the circuitry can be ignored.

Under these conditions, the block diagram reduces to that shown in Fig 3.

Kamman — Introductory Control Systems — Characteristics of Open-Loop and Closed-Loop Systems — page: 4/8



Va(s) +

1,(s)

1
R,

ma

T,(s)

1/J

a(s)

s+c/J

K, |«

v

Figure 3. Block Diagram of an Armature-Controlled DC Motor

As before, the input to the motor is the armature voltage V (s) and the output is the

angular velocity (speed) of the motor. Using block diagram reduction, the open-loop

transfer function for this system is found to be

*

w(s) K
V.(s) Cs+ad

K =K, /RJ
a =(Rc+K,K,,)/RJ

(6)

The parameters K~ and @  are constants that depend on the motor characteristics, inertial

load, and damping coefficient. Note that the value of a~ determines how quickly the motor

responds when a step increase in voltage is applied to the motor.

To study the effects of feedback on transient response, consider proportional, closed-

loop control of the DC motor as shown in Fig 4. The input to the system is the desired

angular velocity @,(s) and the output of the system is the actual angular velocity o(s).

The parameter K, is the calibration constant of the tachometer that relates changes in

angular velocity to changes in voltage. The signal E(s) represents a tachometer voltage

error, and the parameter K, is the proportional gain.
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Figure 4. Proportional Control of a DC Motor Using a Tachometer

The transfer function of the closed-loop system is found using block diagram reduction as

follows.
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@, s+a

@ (5= KK {

K=KK"
i=a +K KK,

(7)

The parameter a determines the speed of response of the closed-loop, speed control

system. The value of a can be increased by increasing the proportional gain K. Note,

however, that if the value of K, is increased too much, the voltage input to the motor may

become too large, potentially damaging the motor. Physical limitations such as these are

often not part of the mathematical model, so the analyst must be aware of them.

Control of Steady-State Error

Consider again the closed-loop speed control system of Fig. 4. To track the error in the

system as it responds to a commanded speed change, the error signal E(s) is taken to be the

output of the system as shown in Fig. 5.
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Figure 5. Error of a DC Motor Speed Control System

Using block diagram reduction, the system error transfer function is found to be

E

K(s+a’)

B Kt(s+a*)

—(s)=

w, s+a +K KK,

s+a

(8)

Using the final value theorem, the steady-state error to a unit step, speed change command

1s found to be

s—0

eSS = llm x'\ T

(steady-state error)

)
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This result shows that the proportional control gain affects the steady-state error K, . As the
value of K, is increased, the value of a is increased and e the steady-state error is

decreased.

Control of Disturbance Response

Consider the block diagram of an armature-controlled DC motor with a disturbance

torque T,(s) as shown in Fig. 6. It is assumed that the disturbance torque reduces the torque

generated by the motor under ideal conditions.

T)(s)

V.(s) + i Ia(s)‘ P T (s) ; 1/J a(s)
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v

e
>
A

Figure 6. Block Diagram of an Armature-Controlled DC Motor with Disturbance

To study the effect of the disturbance on the response of this system, the disturbance
transfer function must be found. One way to do this is to move the disturbance to the left-

most summing block as shown in Fig. 7.

T)(s)

—»

Figure 7. Block Diagram of a DC Motor with Disturbance Input Only

The disturbance transfer function for the open-loop system is then identified to be

@ ~-RK'/K
po- A
D

(open loop system) (10)
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Following this same approach, the disturbance transfer function of the closed-loop,
speed control system of Fig. 4 can be found. In that case, to move the disturbance to the left-
most summing block, the disturbance must be additionally moved over the proportional gain

block as shown in Fig. 8.

TD(S) —Ra _é + % . K* E Ci)(S)
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i K, | | .S
e : s+a

Figure 8. Disturbance Input in Speed Control System of a DC Motor
Using block diagram reduction, the disturbance transfer function for the closed-loop, speed

control system is found to be

~(s)

_-RK/K, K, -1/J

s+a s+a

(closed-loop, speed control system) (11)

The steady-state angular velocity change of the motor to a unit step disturbance torque is

found using the final value theorem.

(a)ss )TD = lsl_ri)l( Tﬁ : %j = ;; (closed-loop, speed control system) (12)
D

These last two results indicate that as the proportional gain K, is increased, the disturbance

response decays faster, and the steady-state angular velocity change is decreased. Both are

positive effects.
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