Elementary Engineering Mathematics
The Integral of a Function as a Function

Previously, we learned how to estimate the integral of a function f(x) over some interval
a < x < b by adding the areas of a finite set of trapezoids that represent the area under f(x) from

a to b. We now consider the concept of antiderivatives and how they are used to calculate the
integral of a function. This idea also exposes the direct link between the concepts of
differentiation and integration.

Antiderivatives

A function G(x) is called an antiderivative of function f(x) over some interval a <x<b if

and only if G(x) is continuous and G'(x) = c;—G = f(x) on the interval. The following table gives
X

antiderivatives of some common functions used in engineering.

Name Function, f(x) | Antiderivative, G(x) (G'(x)= f(x))
Constant a ax

Polynomial terms ax' ax"" [(n+1)
Exponential e” ¢ /a

Sine sin(a x) —cos(ax)/a

Cosine cos(a x) sin(ax)/a

Note that the antiderivative is not unique, because we can add a constant to any known
antiderivative to produce another antiderivative. Recall that the derivative of a constant is zero.

Fundamental Theorem of Integral Calculus

If f(x) is a continuous function over some interval a < x <b, and G(x) is an antiderivative

of f(x) on that same interval, then

j f(x)dx= j G'(x)dx=G(x)| =G(b) - G(a) (1)

So, if we know the function and an antiderivative, then we can calculate the integral directly. We

do not have to approximate it by summing areas.
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Integrals of Functions as Functions

The result of Eq. (1) is a number that represents the area under function f(x) from x=a

to x =b. These results can be made more general by applying an arbitrary ending point of x by

simply replacing the upper limit of the integral with the variable x.

| =G(x)-G(a) )

]C‘f(x)dx = jSG'(x)dx =G(x)

This result can be used to calculate the integral from a starting point of x =a to any ending
point x.

Indefinite Integrals

When we do not specify the interval over which the integral is to be evaluated (that is, we do
not specify the limits of the integral), we call the integral indefinite. Effectively, we are using

arbitrary upper and lower limits. We write,

[fdx=G)+D 3)

Here, D is an arbitrary constant. Because G(x) is an antiderivative of f(x) on the interval

a < x < b, we can evaluate the result of Eq. (3) over that interval or any of its subintervals. Using

Eq. (3) over the entire interval, as expected, gives the same result as in Eq. (1).

(G(b) +D)—(G(a)+ D) =G(b)-G(a) 4)

[f)dx=(G)+ D)

If we use Eq. (3) and evaluate over an arbitrary upper limit, we get the same result as in Eq. (2).

[ £(0)dx=(G(x)+D)| =(G(x)+D)~(G(a)+ D) = G(x) - G(a)

Example 1:
Given: The displacement of a car as it moves with velocity v(¢) from v(f)
time ¢, to ¢, is the integral of v(¢) over that period of time. D >
)
5= j w(t)dt
4
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The displacement can be positive or negative depending on whether v(¢) is positive or negative.

Find: Assuming the car has velocity v(r)=7.5¢ (ft/s*), , ([)JL
(a) find the displacement of the car from 2 to 5 seconds;
(b) find the total distance traveled from 2 to 5 seconds.

Solution:

Nfpemem—m—m =2

N —

(a) An antiderivative of v(¢) = 7.5¢ is |G(t)=7.5¢ [2=3.75¢

Using this result, the displacement from 2 to 5 seconds can now be evaluated.

j (t)dt_j 7.50)dt = G(r)f, =3.75¢°], =3.75(5* = 2*) = 78.75 (f)

2

(b) As before, because v(¢) is positive in the range 2 <t <5, the total distance traveled is equal

to the displacement d =s =78.75 (ft).

Example 2:

Given: The velocity of a ball for a certain period after s A

it is thrown upward is

v(t) =96.6 —32.2¢ (ft/s)

Find: (a) the vertical displacement of the ball from 0

1
|
1
|
|
1
1
|
to 5 seconds; and (b) the total distance traveled | I
o TN
|

by the ball from 0 to 5 seconds.

Solution:

(a) An antiderivative of v(1) =96.6 —32.2¢ is G(¢t) =96.6¢ — (32.2t2/2) =96.6¢t-16.1¢>, so

= [(96.6-32.2¢)dr =(96.6¢ ~16.11%)

O'—.u\

=((96.6x5)—(16.1x5")) =80.5 (ft)

(b) To find the total distance traveled, we must break the interval into two segments: 0 <¢ <3, and

3<t<S.
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3
=(](96.6 -32.2¢)dt|+
0

5
j966 32.21)d
3

=|(96.6x3)~(16.1x3")

~|144.9| +[80.5 —144.9|
~209.3 (ft)

‘(96.6t—16.1t2)3

+[((96.6x5)~ (16.1x5)) ~((96.6x3) - (16.1x3")

+|(96.60—16.172)

3

0

Example 3:

v(7)
Given: The velocity of a car over the time interval from 0 to 5 seconds ‘ ?

is [v(£) =56 (fts)].

Find: The distance traveled by the car in the time
interval from 2 to 5 seconds.

Solution: Since the function 1is positive

throughout the entire range of ¢, the total

distance traveled is equal to the displacement.

We can calculate the displacement by noting that

the antiderivative of v(¢) is G(¢) =3¢’

So,

Velocity (ft/s)

d=s =i(5t2)dt =37
2

2

=3(5'-2")=§(125-8) =195 (f1)

Example 4:

Given: The velocity of a ball for a period after it is

thrown upward can be written as

v(t) =96.6 —32.2¢ (ft/s)

Find: (a) s(¢), the vertical displacement of the ball as a

function of time; (b) the time required for the ball

to reach its starting point; and (c) the maximum

height of the ball.
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Solution:

(a) The displacement function s(¢) relative to the starting point can be found by integrating v(¢)

to an arbitrary upper limit.

s(t) = jv(t)dt = j(96.6 —32.2t)dt = (96.6t —~ 16.1t2)

0 0

' 296.61-16.173 (5)

0

In this result, the displacement function is zero at t =0. If we want to specify a non-zero

displacement at # =0, say s(0) =50, then we take a slightly different approach. First, we set

s(1) = _[v(t)dt =96.6t-16.1£ + D

Then, solve for the constant D to satisfy the initial condition. In this case, D =50.

(b) To find the time required for the ball to return to its starting point, set s(z) from Eq. (5) to zero,

and solve for ¢.

0 (sec)
6 (sec)

s(1)=96.61—16.1¢* =(96.6 —16.1¢)t = 0| or tz{

So, it takes six seconds for the ball to return to its starting position.

(c) Recall that maxima or minima of functions occur when their derivatives are zero. So, to find

the maximum height the ball reaches, set % =0.

s'(1) :%(96.& ~16.1¢)=96.6—(16.1x2)t =96.6 -32.2t =0 = [t =3 (sec)

S =(96.61-16.1¢%)

(96.6x3)-(16.1 ><32)) ~144.9 (ft)

t=3

This corresponds physically to the location where the ball’s velocity is zero.

Recall also that for the function to have a maximum, the second derivative should be negative.

s"(f) = %(96.6 ~32.2r)=-32.2| (checks)
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150 Displacement Function s(t)
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Example 5:

Given: A ball is thrown upward with an initial velocity of 50 (ft/s) from an initial

height of 6 (ft). The ball has a constant downward acceleration of

- ——— e

32.2 (ft/s?). The velocity and displacement functions can be found using the

following indefinite integrals.

W(t) = ja(t)dt s(t) = j v(t)dt

v(?)

O—-————— ———,

Find: (a) the velocity function v(¢); and (b) the displacement function s(z).

Solution:

(a) Using the indefinite form of integration and the initial condition v(0) =50 (ft/s)

W(t) = j a(t)dt = j —322dt=-322t+D =|v(t)=50-32.2¢ (ft/s)

(b) Using the indefinite form of integration and the initial condition s(0) =6 (ft)

s(t) = jv(t)dz = j(50—3z.2t)dt =50t -16.12+D = |s(£)=6+50t—16.1¢> (ft)

See plots of the two functions below.
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