Elementary Engineering Mathematics
Applications of Integration in Statics and Mechanics of Materials

Example 1: Resultant of a distributed load

The diagram shows a cantilevered beam
with a linearly varying load intensity. The

maximum load intensity is w (Ib/ft) at the w (Ib/ft)

right end of the beam. To calculate the
support forces at A4, the distributed load can

be replaced by a single resultant load R acting

at a distance ¢ from the left end.

The load R and distance ¢ are found by calculating the following integrals.

L L L
szwxdx and Rxfzj(wx)xdxzijzdx (1)
0 0 0

The first of Egs. (1) equates the resultant force R with the summation (integral) of the load
intensity, and the second one equates the moment of R about 4 with the sum (integral) of the
moments of the of the load intensity.

Given: L =10 (ft), w=100 (Ib/ft)

Find: (a) the resultant force R; and (b) the distance / that it acts from the support.

Solution:
(a) The resultant load is

1

R :medx =(5x2)
0

0 10
=5x100=500 (Ib)| or [R= [10xdx=1x10x100 =500 (Ib)
0 —_—

0

area of the
triangle

(b) The distance 7 is

10 3
N (:1())(10

0 3x500

10
5000 = [10x* dx = (1) =2(10)=6.6 (ft)
0

For a linearly varying load (starting at zero), the resultant acts % of the way along the

distributed load. If the load is w (Ib/ft) at the wall and zero at the end of the beam, the resultant

would be located % of the way along the load.
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Example 2: Uniformly distributed load
Given: L =10 (ft), w=100 (Ib/ft)

Find: (a) the resultant force R; and (b) the distance

¢ that it acts from the support.
Solution:

(a) The resultant load is

10
R:jumdxzmxum:umoam
0

(b) The distance 7 is

w (1b/ft)

10
1000 = [100x dx = $x10x1000
0

14

5000
2 _1(10)=5 (ft
1000 7(10)=5 (1)

So, for a uniformly distributed load, the resultant acts % of the way along the load.

Example 3:

The diagram of the internal shearing
force for the simply supported beam with a
concentrated load is shown. The internal

bending moment is related to the shearing

force by the equation

M(x) = [V (x)dx

Given: P=100 (Ibs), L=5 (ft),
a=3.5(ft), b=1.5(f),
and M(0)=M(L)=0

Find: (a) moment diagram for the beam,;

and (b) M, the maximum bending

moment in the beam.

Y JIP
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E,=bP/L :
A—x | e
V
F, = bP/L
a4
bpP |
L |
|
1 =
I | =
a I b | X
—aP | : |
L
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Solution:
(a) We can construct the moment diagram from the shear diagram. Where the shear is constant,

the moment varies linearly with x.

V. =bP/L=1.5x100/5=30 (Ib)| and [V, =—aP/L=-3.5x100/5=-70 (Ib)

M (x) =J.3O dx=30x+ D =30x| for 0<x<3.5 (recall that M(0)=0)

M (x) = [-70dx ==70x+ D =—70x+350| for 3.5<x<5 (M(3.5)=105 (ft-Ib))

(b) The maximum bending moment 100 (Ib)
occurs at the concentrated load. It is Y |
the area under the shear diagram from 3.5 (ft) ‘15 (ft)’l
5 | 1. x
0 to 3.5 feet. A -
B
‘A— L _é_
M . =30x3.5=105 (ft-1b) AV (Ib)
Note that the area under the shear 30 : Y
diagram from 3.5 to 7 feet is the : i i
I |
negative of this value, so the bendin I |
g g 770-__._._________1—;
moment at both ends of the beam are | |
A M (ft-1b) : :
Z€ro. I I
105——————————| :
:
| X
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Example 4: A

Given: L=10 (ft), w=100 (Ib/ft), o 100 (Ib/ft)
11111,
V(x)=500-100x (Ib)| (0<x<L) - 10 (ft) B
1V (Ib)
Find: (a) bending moment diagram; and 500"\ |
(b) the maximum bending moment. 5 : e

: >
Solution: \l
~500+ — — — — + — — —-=

(a) Again, we can construct the moment

I |
diagram from the shear diagram. Where 4 M (8-10) : |
the shear varies linearly, the moment | 1250+ — — = :
varies quadratically with x. : : X
M(x)=j(500—1oox) dx !
=500x—50x>+D | (M(0)=0) J‘OO *
=500x —50x° (ft-Ib) i 5 '

(b) The maximum bending moment occurs at

Tsoo (Ib)

the midpoint of the beam. It is the area

under the shear diagram from 0 to L/2.

M, =1x5%x500=1250 (fi-Ib)
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Example 5: A
Y
Given: L =10 (ft), w=100 (Ib/ft), M (L) =0, 100 (Ib/ft)

V(x)=1000-100x (Ib)| (0<x<L) Ll J( l i l
10 (ft

Find: (a) bending moment diagram; and 7 (Ib) (1)

(b) the maximum bending moment. 1000 -
Solution:

(a) In this case, the shear varies linearly with

x, so the moment will vary quadratically —

with x. Given M(10)=0, we find AM (ft-1b) Dy

M (x) = [(1000-100x) dx
=1000x—50x>+ D
=-5000+1000x — 50" (fi-Ib)

—5000+

100 x
(b) The maximum moment occurs at the < J( 5
2 2

i 5000
left end of the beam and is equal to (fi.Ib) .l ) v

the area under the shear diagram v

1000 (Ib)
from 0 to L. Why?

M

max

x10%1000 = 5000 (ft-Ib)

=

Kamman — Elementary Engineering Mathematics — Application of Integration in Statics and Mechanics of Materials — page: 5/5



