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Elementary Engineering Mathematics 
Applications of Integration in Statics and Mechanics of Materials 

Example 1: Resultant of a distributed load 

 The diagram shows a cantilevered beam 

with a linearly varying load intensity. The 

maximum load intensity is  (lb/ft)w  at the 

right end of the beam. To calculate the 

support forces at A, the distributed load can 

be replaced by a single resultant load R acting 

at a distance   from the left end. 

 The load R and distance   are found by calculating the following integrals. 

  
0

L

R wxdx    and    2

0 0

L L

R wx xd x wx dx     (1) 

The first of Eqs. (1) equates the resultant force R with the summation (integral) of the load 

intensity, and the second one equates the moment of R about A with the sum (integral) of the 

moments of the of the load intensity. 

Given: 10 (ft)L  , 100 (lb/ft)w   

Find: (a) the resultant force R; and (b) the distance   that it acts from the support. 

Solution: 
 (a) The resultant load is 
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 (b) The distance   is 
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For a linearly varying load (starting at zero), the resultant acts 2
3  of the way along the 

distributed load. If the load is  (lb/ft)w  at the wall and zero at the end of the beam, the resultant 

would be located 1
3  of the way along the load. 
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Example 2: Uniformly distributed load 

Given: 10 (ft)L  , 100 (lb/ft)w   

Find: (a) the resultant force R; and (b) the distance 

  that it acts from the support. 

Solution: 

 (a) The resultant load is 

  
10

0

100 10 100 1000 (lb)R dx     

 (b) The distance   is 

   
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1000
x dx          

 So, for a uniformly distributed load, the resultant acts 1
2  of the way along the load. 

Example 3: 

 The diagram of the internal shearing 

force for the simply supported beam with a 

concentrated load is shown. The internal 

bending moment is related to the shearing 

force by the equation 

 ( ) ( )M x V x dx   

Given: 100 (lbs)P  , 5 (ft)L  , 

3.5 (ft)a  , 1.5 (ft)b  , 

and (0) ( ) 0M M L   

Find: (a) moment diagram for the beam; 

and (b) maxM  the maximum bending 

moment in the beam. 

  



Kamman – Elementary Engineering Mathematics – Application of Integration in Statics and Mechanics of Materials – page: 3/5 
 

Solution: 

(a) We can construct the moment diagram from the shear diagram. Where the shear is constant, 

the moment varies linearly with x.  

  1.5 100 5 30 (lb)aV bP L      and  3.5 100 5 70 (lb)bV aP L         

  ( ) 30 30 30M x dx x D x     for 0 3.5x   (recall that (0) 0M  ) 

  ( ) 70 70 70 350M x dx x D x          for 3.5 5x     (3.5) 105 (ft-lb)M   

(b) The maximum bending moment 

occurs at the concentrated load. It is 

the area under the shear diagram from 

0 to 3.5 feet. 

  max 30 3.5 105 (ft-lb)M     

 Note that the area under the shear 

diagram from 3.5 to 7 feet is the 

negative of this value, so the bending 

moment at both ends of the beam are 

zero. 
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Example 4: 

Given:  10 (ft)L  , 100 (lb/ft)w  , 

(0) ( ) 0M M L  , and 

( ) 500 100  (lb)V x x     0 x L   

Find: (a) bending moment diagram; and  

(b) the maximum bending moment. 

Solution: 

(a) Again, we can construct the moment 

diagram from the shear diagram. Where 

the shear varies linearly, the moment 

varies quadratically with x. 

 

 
2

2

( ) 500 100

500 50

500 50  (ft-lb)

M x x dx

x x D

x x

 

  

 


  (0) 0M   

(b) The maximum bending moment occurs at 

the midpoint of the beam. It is the area 

under the shear diagram from 0 to 2L . 

 max
1
2 5 500 1250 (ft-lb)M      
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Example 5: 

Given: 10 (ft)L  , 100 (lb/ft)w  , ( ) 0M L  ,

( ) 1000 100  (lb)V x x     0 x L   

Find: (a) bending moment diagram; and 

(b) the maximum bending moment. 

Solution: 

(a) In this case, the shear varies linearly with 

x, so the moment will vary quadratically 

with x. Given (10) 0M  , we find 

 

 
2

2

( ) 1000 100

1000 50

5000 1000 50  (ft-lb)

M x x dx

x x D

x x

 

  

   


  

(b) The maximum moment occurs at the 

left end of the beam and is equal to 

the area under the shear diagram 

from 0 to L. Why? 

 max
1
2 10 1000 5000 (ft-lb)M      


