

Elementary Dynamics

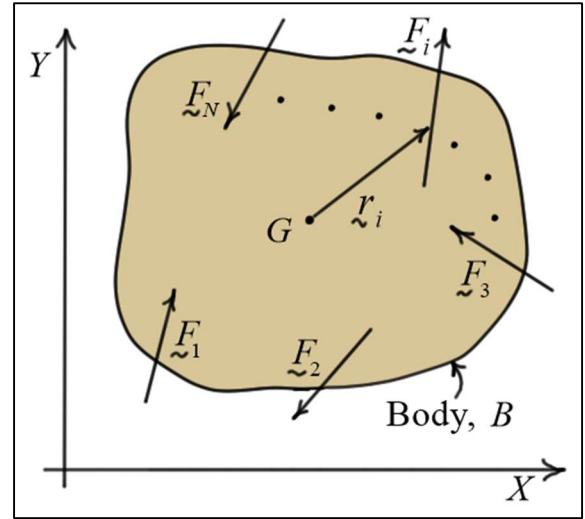
Principle of Impulse and Momentum for Rigid Body Motion in Two Dimensions

General Plane Motion

The figure shows a rigid body moving in two dimensions. The motion is caused by a series of N forces \tilde{F}_i ($i=1,\dots,N$). Generally, each force has the effect of **translating** and **rotating** the body. Newton's laws of translational and rotational motion are

$$\sum_{i=1}^N \tilde{F}_i = m \tilde{a}_G = m \left(\frac{d \tilde{v}_G}{dt} \right) = \frac{d}{dt} (m \tilde{v}_G)$$

$$\sum_{i=1}^N (\tilde{M}_G)_i = \sum_{i=1}^N (\tilde{r}_i \times \tilde{F}_i) = I_G \tilde{\alpha} = I_G \left(\frac{d \tilde{\omega}}{dt} \right) = \frac{d}{dt} (I_G \tilde{\omega})$$



Note here that $(\tilde{M}_G)_i$ represents the **moment** of force \tilde{F}_i about the mass center G . Also, recall that I_G represents the **mass moment of inertia** of the body about a Z axis passing through the mass center G .

The above equations can be **integrated with respect to time** to give

$$\left(m \tilde{v}_G \right)_1 + \int_{t_1}^{t_2} \left(\sum_{i=1}^N \tilde{F}_i \right) dt = \left(m \tilde{v}_G \right)_2 \quad (\text{Principle of Linear Impulse \& Momentum})$$

$$\left(I_G \tilde{\omega} \right)_1 + \int_{t_1}^{t_2} \left(\sum_{i=1}^N (\tilde{r}_i \times \tilde{F}_i) \right) dt = \left(I_G \tilde{\omega} \right)_2 \quad (\text{Principle of Angular Impulse \& Momentum})$$

The **principle of linear impulse and momentum** states that the linear impulses applied to the body over the **time interval** $t_1 \rightarrow t_2$ give rise to a **change** in the linear momentum of the body.

The **principle of angular impulse and momentum** states that the angular impulses applied to the body over the **time interval** $t_1 \rightarrow t_2$ give rise to a **change** in the angular momentum of the body.

Note the linear momentum is often written as $\tilde{L} = m \tilde{v}_G$, and the angular momentum about G the mass center as $\tilde{H}_G = I_G \tilde{\omega}$.

Note that, like Newton's laws of translational and rotational motion, the above equations are **vector equations**. For planar motion, there are **two scalar linear momentum equations** (X and Y directions) and **one scalar angular momentum equation** (Z direction).

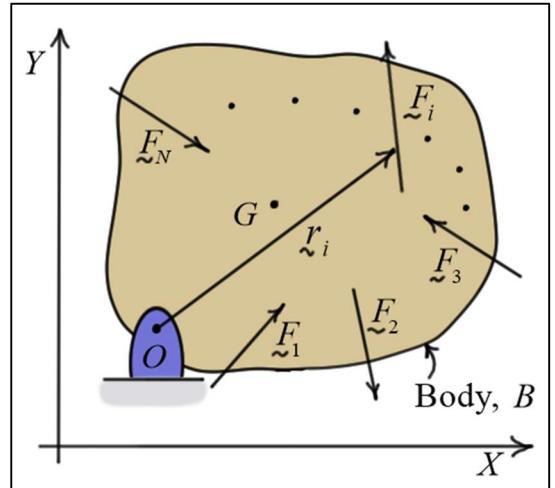
Special Case

Fixed Axis Rotation

When a body is undergoing *fixed axis rotation* as shown, the principle of angular momentum can be written about the fixed-point O as

$$(I_O \omega)_1 + \int_{t_1}^{t_2} \left(\sum_{i=1}^N (\mathbf{r}_i \times \mathbf{F}_i) \right) dt = (I_O \omega)_2$$

The term $\sum_{i=1}^N (\mathbf{r}_i \times \mathbf{F}_i)$ represents the moment of all the forces about the fixed point O , and I_O represents the mass moment of inertia of the body about a Z axis passing through O .



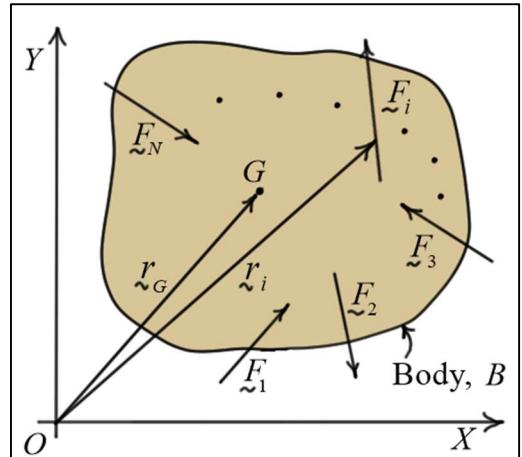
Principle of Angular Momentum about an Arbitrary Fixed Point

Consider a rigid body undergoing planar motion. The principle of angular impulse and momentum can also be written relative to an arbitrary fixed-point O as follows

$$(H_O)_1 + \int_{t_1}^{t_2} \left(\sum_{i=1}^N (\mathbf{r}_i \times \mathbf{F}_i) \right) dt = (H_O)_2$$

Here,

$$H_O = I_G \omega + (\mathbf{r}_G \times m \mathbf{v}_G)$$



Note that H_O is the sum of the angular momentum of the body about G and the moment of the linear momentum about O . The linear momentum $\mathbf{L} = m \mathbf{v}_G$ is assumed to have a line of action through G .