Introductory Control Systems
Second-Order System Response — Theoretical Analysis

Reference: R.N. Clark, Introduction to Automatic Control Systems, John Wiley & Sons, 1962.

The transfer functions for normalized second-order systems fall into the following two general categories.

Casel: _(S)ZZL Ca562: {(S):(qz/a)(s—‘ra)
S+ ps+q R S+ ps+q

For the purpose of the analysis that follows, it is assumed the poles and zero of these transfer functions are in the
left-half of the s-plane. Note here the classifications of Case 1 and Case 2 are not universally accepted but are

used here for convenience. The analysis that follows develops formulae for 7', the peak-time and %OS the

percent overshoot of these systems associated with a unit step input.

Case 1 Under-damped Systems:

The general form of the normalized transfer functions of under-damped, second-order systems with a

constant numerator is

Y >

o)y

) 2
R s°+20w,s + w;

Letting R(s) :% for a unit-step input and using Laplace transform tables, the response function y(#) can be

written as follows.

1
y(t)_1—£ e_(ga’"[)sin((a)anl—g“z)t+¢) $=cos™ () 0<¢ <1 (1)
\/1—./;2J

An example system response is shown in Fig. 1 for systems with natural frequency @, =35 (rad/s) and

damping ratio ¢ =0.5. As expected, the response starts at zero and reaches a final value of one. In the transition

from initial to final values, the system overshoots and oscillates about the final value. The time at which the
system reaches a maximum value just after its first crossing of the final value is known as the “peak-time”. The
percent overshoot of the system is measured at the peak time. As indicated on the plot, the peak-time and percent

overshoot for this system are 7', ~0.718 (sec) and %O0S ~16.3%.
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Figure 1. Step Response of an Example Case 1 System

Formulae for the peak-time and percent overshoot for these types of systems can be derived using the response

function of Eq. (1). First, the peak-time is found by finding the times when the derivative of y(z) is zero. Before

differentiating, y(¢) is expanded using the trigonometric identity

|sin(a + f3) =sin(a) cos( ) + cos(x) sin(ﬂ)|

Using this identity, Eq. (1) can be rewritten as follows.
y(@)=1 [\/#Je““’"’) [sin((a)n\H ~? )t)cos(¢) + cos((a)nwll ~? )t)sin(qﬁ)}

Note from Eq. (1) that cos(¢) =¢ and, consequently, sin(¢) = \/ 1—-cos’ () = \/ 1-¢? . Substituting these results

into the above equation gives

(0 = 1[%} e Enn sin((a)n 12 )z)—e—“ o) cos((a)n 1-¢? )t) )

Eq. (2) can now be differentiated and simplified as follows.

e T el R Y

+ e ¢ cos((a)n 1-¢7? )t)+a)nﬁe_(g“’"’) sin((a)nﬁ)t)
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_[ﬂ] “‘”t)sln((a)n 1—4’2)) W
+W+w\/— (g‘“)sm(( 1- (2)1‘)

_ ﬂ} W””sm(( w,1-¢? )t)+a)n\/?e (fwt)sm((a)n 1—4’2)t)

Ji-¢2
) gza)n+a)na)ng“z}(é,wn[)sin((w 1—§z)t)

n

= y(t)[\/%Je“”"’)sin((wn 1—(2)t) (3)

Using Eq. (3) it is clear that the derivative of y(¢) is zero when the sine function is zero. This occurs at

t= {O, 7,27, . } . The peak-time T , occurs at the first peak after the start of the response. So,

T, =———| =0, =—= (4)

1-¢2 1= ¢?

Using Egs. (2) and (4) the percent overshoot can now be written as follows.

%0S =100( (T ,)—1) =100 & 90T Gn ()= €T cos(z
P

1/1_52 — —

Zero -1
{caiz)

= |%0S =100 ““"" =100e (5)

The functions for @,T, and %OS of Egs. (4) and (5) are plotted in the Figs. 2 and 3 below. Note that they

are functions of the damping ratio ¢ only. The function for @,T, starts at a value of 3.142 and increases to

infinity as ¢ increases from zero to one. The peak-time is infinite for { =1 because the response only approaches

the final value as ¢ — o, hence theoretically never reaching the final value. The percent overshoot decreases from

100% to zero as ¢ increases from zero to one. Using Eq. (5) the percent overshoot for systems with a dampin
g Eq p y ping

ratio of ¢ =0.5 is calculated to be %OS ~16.3% which is consistent with the measured results in Fig. 1 above.
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Figure 2. a)nTp Product vs. Damplng Ratio é’ Figure 3. Percent Overshoot vs. Damplng Ratio é/

Case 2 Under-damped Systems:

The general form of the normalized transfer functions of under-damped, second-order systems with a real

Zero is

{(S)_ (603/0)(5+a) ©6)

-2 2
R s +2¢w,s + w,

An example response is shown here for systems with
System: sys

Peak amplitude: 3.24 Step Response

= 1 1 35 Overshoot (%): 224 ‘ i
natural frequency o, =35 (rad/s), damping ratio : L
Lo

¢ =0.5, and a=1. Note the natural frequency and sb

\

\ o, =5 (rad/s)
£=05
\ a=1

damping ratio are the same as used in the Case 1 25} |

example above. As expected, the response starts at

zero and reaches a final value of one. As with the

Response Amplitude

Case 1 systems, the system overshoots and oscillates
about the final value. The percent overshoot of the j

Case 2 system, however, is much larger than that of o
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the Case 1 system. As indicated on the plot, the peak- 0 . 15
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time and percent overshoot for this system are

T, ~0.295 (sec) and %O0OS ~224% . So, this Case 2

Figure 4. Step Response of an Example Case 2 System

system has a faster response with more overshoot

than the corresponding Case 1 system.
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The response of Case 2 under-damped systems can be studied by first separating the transfer function into the

sum of two transfer functions. Using this approach, Eq. (6) can be rewritten as follows.

%(s)— (a),f/a)(SJra) :a)_,f[ s }_wj{ a }

s’ +2los+w;  a|sP+2los+ o) a|s*+2lws+o;

_(1 o, o,
i 7 | T2 2
a s +20w,s + o, s°+20w,s + w,

N ORH ECIEET)] g

In the time domain, Eq. (7) can be written as follows.

x(6)=y(0)+ (L) (@) ®)

Eq. (8) shows the response of Case 2 systems are the sum of the response of the corresponding Case 1 system,
that is y(¢), plus 1/a times the derivative of y(¢). For small values of @ the response of Case 2 systems will be
significantly different than the corresponding Case 1 system; however, for large values of a the response of Case
2 systems should be very similar to the corresponding Case 1 system. Using Eq. (8) the peak-time and percent
overshoot of Case 2 under-damped systems are derived below.

Substituting from Egs. (2) and (3) into Eq. (8), the response of Case 2 systems can be written as follows.

x(t)=1- {ﬁ] e ¢ sin ((a)n\/?) t) —e €™ cos ((a)n M) t)

el

Or,

x(t)=1+e 2" [%Jsin((@ 1—§z)t)—cos((a)n 1—4”2)t) 9

Using Eq. (9), the derivative of x(¢) can be calculated as follows.

i) =~Cw,e " {%}sin((% 1-¢° )t)—cos((a)n 1-¢° )t)

+e e M a)nwcos((a)n 1—4’2)t)+a)n\/?sin((a)n 1—42)z)
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—e““’"”_a)nﬁ{g (\/1 /‘;);g”zwn }in((a)n 1—42)z)

+e D _:;,coj+ w, (a) s((a) t)
el e o

—(c:wt)( /)cos(( n\/?)t)

:>)'c(t)—a)ne(Cwnt)[{%]sin((wn 1—{2)I)+(a)n/a)cos((a)n l—Cz)t)} (10)

This result can be written as a single phase-shifted sine function. In this process the variable S = a/ Cw

n

(which indicates the relative location of the zero and the complex poles along the real axis) is introduced.
)'c(t):a)ane_gw”t sin((a)nxll—g“z)tﬂ//z) (11)

Here,

Mzz(M}2+(w /a)2:1_2(§w”/a)+M+(a’n/a)2(1—;72/)
2 \/? (1_42)

Jl 2(¢, [a)+ 5@ Ja)'[¢* 1= (Z/ﬂ)+(1/ﬂ§)

N N (12)

any, = (@/a) ___ (<) (gw/a JI=E_(Upo)i=&*
2 [1‘(@’/6‘)] 1-(¢w, /a) 1-(1p)
-2

Using the results of Egs. (11) to (13), the times when x(¢) is zero are seen to be those when the argument of

=|M,(B8.¢)=

:>l//2(ﬂ,é“)—tanl! ”2] (13)

the sine function is a multiple of = . That is,
(a)n\/I—{z )tﬂ//z = {7:, 2r, }

The peak-time of x(¢) is then given to be

T, =—""22 | with t//z(ﬂ,g’)—tan{ J1-¢° ] (14)

®,1-¢* £(p-1)
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Using Egs. (9) and (14) the percent overshoot of the system can then be written as follows.

%0S =100(x(T,)-1)

((@,/a)-¢

Ji-¢*
(6@, /a)-¢*

L gfi-¢

100 e—gw—wz)/dl—gz

100 e—gw—wz)/dl—;z

SiIl(?Z'—l//z)—COS(ﬂ'—l/lz)

sin(ﬂ—z//z)—cos(fr—wz)

p)-¢

gNL=¢?

%08 =100 ¢ <IN

sin(;z—t//z)—cos(n—t//z)

(15)

The figure below shows the percent overshoot of Case 2 under-damped systems as a function the zero-

complex pole location ratio f for damping ratios from 0.1 to 0.9. Note that unlike Case 1 systems (see Fig. 3),

the percent overshoot of Case 2 systems can be well above 100%. The largest percent overshoots occur for the

smallest values of £, that is when the zero is located to the right of the complex poles in the s-plane. The percent

overshoots decrease as the zero is moved farther and farther into the left-half plane.

Note that the curve for each damping

Percent Overshoot vs. Zero-Pole Location Ratio (Beta)

ratio reaches a horizontal asymptote as £ ﬁ '

increases. The percent overshoots
associated these asymptotes are the same
as those provided for Case 1 systems as
shown above in Fig. 3. So, the effect of

the zero on the percent overshoot of the

Percent Overshoot

system is lessened as it is located farther

and farther into the left-half of the s-plane

-t

o
=]
T

relative to the complex poles. Note finally

that this figure predicts over 200%

damping ratio = 0.1 \
damping ratio=0.2| \ -

damping ratio =0.3| \ R Ak
damping ratio = 0.4
damping ratio = 0.5
damping ratio = 0.6
damping ratio = 0.7
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damping ratio = 0.9 P S S

. 107!
overshoot for Case 2 systems with 10°!

10° 10"
Zero-Pole Location Ratio (Beta)

damping ratio ¢ =0.5 and zero-pole

Figure 5. Percent Overshoot vs. Zero-Pole Location Ratio f

location ratio f=0.4. See the boxed

result in Figure 5.

The results in Fig. 5 are consistent with the results presented in Fig. 4 for the Case 2 example under-damped

system. They are also consistent with those presented in Fig. 4.44 of the text Introduction to Automatic Control

Systems by R.N. Clark (John Wiley & Sons, Inc., 1962).
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Case 2 Critically Damped Systems:

Egs. (14) and (15) are singular when ¢ =1, so critically damped systems need to be analyzed separately. The
peak time and percent overshoot for critically damped systems can be found using the same process outlined
above for under-damped systems. To this end, note the general form of the normalized transfer functions of
critically damped, second-order systems with a real zero can be written as follows.

K(S):(“_ZJ“_" (16)

a (s+oz)2

The unit step response of an example | sysem sys ,
Peak amplitude: 1.28 Unit Step Response

critically damped system with a =10 and | Qi ey 017

a =4 1is shown in Fig. 6. Case 1 critically 1.2} /
damped systems have no overshoot, but as
seen in this example, Case 2 critically

damped systems can have overshoot. The

Amplitude

measured peak time and percent overshoot

%O0S ~ 28.3% . Formulae for the peak time Bl

for this system are 7,~0.17 (sec) and E
and percent overshoot for Case 2 critically :
1

damped systems are derived in the following

paragraphs. Time (seconds)

Figure 6. Step Response of Example Case 2 Critically Damped System

As with under-damped systems, the response of Case 2 critically damped systems can be separated into two

parts as follows.

e e O]

Here, as before, Y(s) refers to the Laplace transform of the response of the corresponding Case 1 system. Letting

R(s) =% for a unit-step input and using Laplace transform tables, the response function y(¢) can be written as

yt)=1-e* —ate™ (18)

Differentiating this result gives
P = xe™ — g™ 1aPte ™ =\ i) = atte™ (19)

Using Egs. (18) and (19) the step response of Case 2 critically damped systems can be written as follows.
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2
x() =y + 1) =(1-e —ate™ )+ L te ™) = x(t)zl—e_””+(a _““]ze‘“’ (20)
a

Setting the derivative of x(¢) to zero gives

2 2 2 2
. _ a’—aa | _ a’—aa | _ a’—aa a’—aa _
x(t)=ae ™ + e —a te ™ =|a+ -a tle ™ =0
a a a a

Because e “ # 0, the term in square brackets must be zero. So,

o[ [ ] [y (e 2y

a a a a

Comparing the two boxed results above gives the peak time.

T = Q1)

Note this result is positive (and meaningful) only if a < @ which indicates the zero is to the right of the repeated

poles. For the example system of Fig. 6, Eq. (21) predicts a peak time of

P a-a 10-4

~0.17 (sec)

This is consistent with the measured result shown in Fig. 6.

Substituting from Eq. (21) into Eq. (20) gives the corresponding maximum value of x(¢). The percent

overshoot is then defined to be

2_
%OS=100(x(Tp)—1)=100{—e_aT” {“ ““JT e—a%}

a
I a2—aa
=100 [ )Tp—l e
a

- 1oo_a[”fj(&l/aj_l}—a/w—a>

=100 (ﬁ - 1) /(@)
a

Now, define the ratio 3= a/a and the above expression can be rewritten as follows.

%0S =100 (ﬂ— 1) e @ =100 (1— 1}—“/““—“/“)
a B

= %08 = 100(%—1)5‘/“—” (22)
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Using the results in Eq. (22), Fig. 5 can now be modified to include the results for Case 2 critically damped

systems. See Fig. 7 below. Notice the percent overshoot for critically damped systems is defined only for systems

with a <« , or equivalently, f <1.Eq. (22) predicts a percent overshoot of 28.3% for £ = 0.4 which is consistent

with the measured results for the example system shown above in Fig. 6. See the boxed result in Figure 7.
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Figure 7. Percent Overshoot vs. Zero-Pole Location Ratio /S

Case 2 Over-damped Systems:

The general form of the normalized transfer functions of over damped, second-order systems with a real zero

can be written as follows. For convenience in the latter analysis, it is assumed here that ¢ > 5.

X

T v e

R

|

To analyze these systems, first separate the transfer function into two parts as done above.

bc

i

Gj{(wbﬁ?m)

(S+b)(s+c)

(2%

)]+

Y

26

o)

Letting R(s) :% for a unit-step input and using Laplace transform tables, the response function y(#) can be

written as

b e
(c=b)

—bt —ct

(o) =1~

¢ e
(c—b)

Differentiating this result gives

(23)

Kamman — Introductory Control Systems — Second Order System Response — Theoretical Analysis — page: 10/12



Fy= et P 24)
(c—-b) (c—-b)
Combining these results gives the response function for Case 2 over-damped systems.
c b : bc bc :
x(t)=y()+Lyp@)=|1- e+ e |+1 e’ - e
(0)=y(0) +5 (@) { b (c—b) } a|:(c_b) (c—b)
bc—ac | ,, | ab—bc | _,
=1+ e+ e
a(c—b) a(c—b)
= x(t):1+£{b_a}e'” +é{a_c}e”
alc—b alc—b
To find the peak time, now set the derivative of x(¢) to zero.
. be|b—a| s, bcla—-c| —or bc -bT —eT
x(T)=—— e N —— e ' =- b—a)e " +(a-c)e " |=0
) a [c—b} a {c—b} a(c—b)[( ) ( ) }
Setting the term in square brackets to zero gives
(b—a)eibT” =(c—a)e "
Taking the natural log of both sides of this equation and solving for 7', gives
In(b-a)+ ln(e_bT” ) =In(c—a)+ ln(e_CT” )
= In(b-a)-bT,=In(c-a)-cT,
= (c-DT, = ln(c—a)—ln(b—a)
In(c—a)-In(b-
7 - n(c—a) bn( a) 25)
c—

Note that Eq. (25) provides a solution for 7', only if ¢ >b > a. This means the zero must be located to the right

of the two real poles. The percent overshoot for these systems is defined to be

c(b-—a) »r, bla—-c) —r
%08 =100(x(T )—1)=100| — P +— ’ >b> 26
0 (x( ,) ) {a(c—bje a(c—bje } (c a) (26)
To check these results, consider the following system.
g(s):(b_cj s+a __10¢s+1) @
R a (s+b)(s+c) (s+2)(s+5)

Using Egs. (25) and (26) with ¢ =5, b=2, and a =1, the peak time and percent overshoot of this system are

o In(c—a)-In(b-a) In(5-1)-In(2-1)
r c=b - 3

~ 0.462 (sec) (28)
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%0S =100 E(b_“je”f +5(“_cje"” 100 5(—2_1je_2(°'462)+2(—1_5je_5(0‘462)
a\c—b a\c—b 5-2 5-2 (29)

_100
3
Fig. 8 below shows the unit step response of three systems with transfer functions of the following form with

values of @ ={1,3,10}.

T (%) it g €= 60

R a s+b)(s+c) _(s+2)(s+5)

[5 o 09202 —86_2‘31] — |%OS ~ 39.7%|

Note that for the systems with a > b, the system exhibits no overshoot. This is consistent with the fact that Eq.
(25) for peak time has no solution if @ > b . However, the system with a <5 does have overshoot. The measured

peak time and percent overshoot shown for the system having a =1 are consistent with those calculated above in

Eqgs. (28) and (29).

Unit Step Response
System: a=1
Peak amplitude: 1.4
Overshoot (%): 39.7
Attime (seconds): 0.461
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Figure 8. Unit Step Response for Transfer Functions of Form Shown in Eq. (30)
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