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Introductory Control Systems 
Second-Order System Response – Theoretical Analysis 

Reference: R.N. Clark, Introduction to Automatic Control Systems, John Wiley & Sons, 1962. 

 The transfer functions for normalized second-order systems fall into the following two general categories. 
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For the purpose of the analysis that follows, it is assumed the poles and zero of these transfer functions are in the 

left-half of the s-plane. Note here the classifications of Case 1 and Case 2 are not universally accepted but are 

used here for convenience. The analysis that follows develops formulae for pT  the peak-time and %OS  the 

percent overshoot of these systems associated with a unit step input. 

Case 1 Under-damped Systems: 

 The general form of the normalized transfer functions of under-damped, second-order systems with a 

constant numerator is 
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Letting 1( ) sR s   for a unit-step input and using Laplace transform tables, the response function ( )y t  can be 

written as follows. 
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 1cos ( )   0 1   (1) 

 An example system response is shown in Fig. 1 for systems with natural frequency 5 (rad/s)n   and 

damping ratio 0.5  . As expected, the response starts at zero and reaches a final value of one. In the transition 

from initial to final values, the system overshoots and oscillates about the final value. The time at which the 

system reaches a maximum value just after its first crossing of the final value is known as the “peak-time”. The 

percent overshoot of the system is measured at the peak time. As indicated on the plot, the peak-time and percent 

overshoot for this system are 0.718 (sec)pT   and % 16.3%OS  . 
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 Formulae for the peak-time and percent overshoot for these types of systems can be derived using the response 

function of Eq. (1). First, the peak-time is found by finding the times when the derivative of ( )y t  is zero. Before 

differentiating, ( )y t  is expanded using the trigonometric identity 

 sin( ) sin( )cos( ) cos( )sin( )         

Using this identity, Eq. (1) can be rewritten as follows. 
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Note from Eq. (1) that cos( )   and, consequently, 2 2sin( ) 1 cos ( ) 1      . Substituting these results 

into the above equation gives 
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Eq. (2) can now be differentiated and simplified as follows. 
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Figure 1. Step Response of an Example Case 1 System 
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 Using Eq. (3) it is clear that the derivative of ( )y t  is zero when the sine function is zero. This occurs at 

 0, , 2 ,t    . The peak-time pT  occurs at the first peak after the start of the response. So,  
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Using Eqs. (2) and (4) the percent overshoot can now be written as follows. 
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 The functions for n pT  and %OS  of Eqs. (4) and (5) are plotted in the Figs. 2 and 3 below. Note that they 

are functions of the damping ratio   only. The function for n pT  starts at a value of 3.142 and increases to 

infinity as   increases from zero to one. The peak-time is infinite for 1   because the response only approaches 

the final value as t  , hence theoretically never reaching the final value. The percent overshoot decreases from 

100% to zero as   increases from zero to one. Using Eq. (5) the percent overshoot for systems with a damping 

ratio of 0.5   is calculated to be % 16.3%OS   which is consistent with the measured results in Fig. 1 above. 
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Case 2 Under-damped Systems: 

 The general form of the normalized transfer functions of under-damped, second-order systems with a real 

zero is 
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An example response is shown here for systems with 

natural frequency 5 (rad/s)n  , damping ratio 

0.5  , and 1a  . Note the natural frequency and 

damping ratio are the same as used in the Case 1 

example above. As expected, the response starts at 

zero and reaches a final value of one. As with the 

Case 1 systems, the system overshoots and oscillates 

about the final value. The percent overshoot of the 

Case 2 system, however, is much larger than that of 

the Case 1 system. As indicated on the plot, the peak-

time and percent overshoot for this system are 

0.295 (sec)pT   and % 224%OS  . So, this Case 2 

system has a faster response with more overshoot 

than the corresponding Case 1 system. 

Figure 2.  Product vs. Damping Ratio  Figure 3. Percent Overshoot vs. Damping Ratio  

Figure 4. Step Response of an Example Case 2 System 
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 The response of Case 2 under-damped systems can be studied by first separating the transfer function into the 

sum of two transfer functions. Using this approach, Eq. (6) can be rewritten as follows. 
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In the time domain, Eq. (7) can be written as follows. 

   1( ) ( ) ( )ax t y t y t     (8) 

Eq. (8) shows the response of Case 2 systems are the sum of the response of the corresponding Case 1 system,  

that is ( )y t ,  plus 1 a  times the derivative of ( )y t . For small values of a  the response of Case 2 systems will be 

significantly different than the corresponding Case 1 system; however, for large values of a  the response of Case 

2 systems should be very similar to the corresponding Case 1 system. Using Eq. (8) the peak-time and percent 

overshoot of Case 2 under-damped systems are derived below. 

 Substituting from Eqs. (2) and (3) into Eq. (8), the response of Case 2 systems can be written as follows. 
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Using Eq. (9), the derivative of ( )x t  can be calculated as follows. 
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 This result can be written as a single phase-shifted sine function. In this process the variable na   

(which indicates the relative location of the zero and the complex poles along the real axis) is introduced. 
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 Using the results of Eqs. (11) to (13), the times when ( )x t  is zero are seen to be those when the argument of 

the sine function is a multiple of  . That is, 
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Using Eqs. (9) and (14) the percent overshoot of the system can then be written as follows. 
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 The figure below shows the percent overshoot of Case 2 under-damped systems as a function the zero-

complex pole location ratio   for damping ratios from 0.1 to 0.9. Note that unlike Case 1 systems (see Fig. 3), 

the percent overshoot of Case 2 systems can be well above 100%. The largest percent overshoots occur for the 

smallest values of  , that is when the zero is located to the right of the complex poles in the s-plane. The percent 

overshoots decrease as the zero is moved farther and farther into the left-half plane. 

 Note that the curve for each damping 

ratio reaches a horizontal asymptote as   

increases. The percent overshoots 

associated these asymptotes are the same 

as those provided for Case 1 systems as 

shown above in Fig. 3. So, the effect of 

the zero on the percent overshoot of the 

system is lessened as it is located farther 

and farther into the left-half of the s-plane 

relative to the complex poles. Note finally 

that this figure predicts over 200% 

overshoot for Case 2 systems with 

damping ratio 0.5   and zero-pole 

location ratio 0.4  . See the boxed 

result in Figure 5. 

 The results in Fig. 5 are consistent with the results presented in Fig. 4 for the Case 2 example under-damped 

system. They are also consistent with those presented in Fig. 4.44 of the text Introduction to Automatic Control 

Systems by R.N. Clark (John Wiley & Sons, Inc., 1962). 

Figure 5. Percent Overshoot vs. Zero-Pole Location Ratio  
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Case 2 Critically Damped Systems: 

 Eqs. (14) and (15) are singular when 1  , so critically damped systems need to be analyzed separately. The 

peak time and percent overshoot for critically damped systems can be found using the same process outlined 

above for under-damped systems. To this end, note the general form of the normalized transfer functions of 

critically damped, second-order systems with a real zero can be written as follows. 
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2

2

X s a
s
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The unit step response of an example 

critically damped system with 10   and 

4a   is shown in Fig. 6. Case 1 critically 

damped systems have no overshoot, but as 

seen in this example, Case 2 critically 

damped systems can have overshoot. The 

measured peak time and percent overshoot 

for this system are 0.17 (sec)pT   and  

% 28.3%OS  . Formulae for the peak time 

and percent overshoot for Case 2 critically 

damped systems are derived in the following 

paragraphs. 

 

 As with under-damped systems, the response of Case 2 critically damped systems can be separated into two 

parts as follows. 

  
     

   
2 2 2

2 2 2

1 1X s a Y Y
s s s s

R a a a R Rs s s

  
  

                                                     


 (17) 

Here, as before, ( )Y s  refers to the Laplace transform of the response of the corresponding Case 1 system. Letting 

1( ) sR s   for a unit-step input and using Laplace transform tables, the response function ( )y t  can be written as 

 ( ) 1 t ty t e te       (18) 

Differentiating this result gives 

 ( ) ty t e   te   2 2( )t tte y t te       (19) 

Using Eqs. (18) and (19) the step response of Case 2 critically damped systems can be written as follows. 

Figure 6. Step Response of Example Case 2 Critically Damped System 



Kamman – Introductory Control Systems – Second Order System Response – Theoretical Analysis – page: 9/12 
 

    
2

21 1( ) ( ) ( ) 1 ( ) 1t t t t t
a a

a
x t y t y t e te te x t e te

a
           

           
 

   (20) 

 Setting the derivative of ( )x t  to zero gives 

  
2 2 2 2

( ) 0t t t ta a a a
x t e e te t e

a a a a
                           

              
         

  

Because 0te   , the term in square brackets must be zero. So, 

  
2 a a

a

  
 

  
 

2 a    
2 2 2

2
p p p

a a
T T a T

a a a a a

      
              

    
 

Comparing the two boxed results above gives the peak time. 

 
1

pT
a




  (21) 

Note this result is positive (and meaningful) only if a   which indicates the zero is to the right of the repeated 

poles. For the example system of Fig. 6, Eq. (21) predicts a peak time of  

 
1 1

0.17 (sec)
10 4pT

a
  

 
 

This is consistent with the measured result shown in Fig. 6. 

 Substituting from Eq. (21) into Eq. (20) gives the corresponding maximum value of ( )x t . The percent 

overshoot is then defined to be 

 

 
2

2

% 100 ( ) 1 100

100 1

100

p p

p

T T
p p

T
p

a
OS x T e T e

a

a
T e

a

a

 



 

 



 



  
      

   
  

   
   




1

a a
 
 

 
( )

( )

1

100 1

a

a

e

e
a

 

 

 

 

  
  

   
   
 

  

Now, define the ratio a   and the above expression can be rewritten as follows. 

 ( ) (1 )1
% 100 1 100 1a aOS e e

a
    


           

   
 

 1 (1 )1
% 100 1OS e 


  

   
 

 (22) 
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 Using the results in Eq. (22), Fig. 5 can now be modified to include the results for Case 2 critically damped 

systems. See Fig. 7 below. Notice the percent overshoot for critically damped systems is defined only for systems 

with a  , or equivalently, 1  . Eq. (22) predicts a percent overshoot of 28.3% for 0.4   which is consistent 

with the measured results for the example system shown above in Fig. 6. See the boxed result in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2 Over-damped Systems: 

 The general form of the normalized transfer functions of over damped, second-order systems with a real zero 

can be written as follows. For convenience in the latter analysis, it is assumed here that c b .  

     
X bc s a

s
R a s b s c

          
  

To analyze these systems, first separate the transfer function into two parts as done above. 

                  1 1 1X bc bc Y Y Y Y
s s s s s s s

R a s b s c s b s c a R R a R R

                                                      


 

 Letting 1( ) sR s   for a unit-step input and using Laplace transform tables, the response function ( )y t  can be 

written as 

 ( ) 1
( ) ( )

bt ctc b
y t e e

c b c b
   

 
 (23) 

Differentiating this result gives 

Figure 7. Percent Overshoot vs. Zero-Pole Location Ratio  
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 ( )
( ) ( )

bt ctbc bc
y t e e

c b c b
  

 
  (24) 

Combining these results gives the response function for Case 2 over-damped systems. 

 

1 1( ) ( ) ( ) 1
( ) ( ) ( ) ( )

1
( ) ( )

bt ct bt ct

bt ct

a a
c b bc bc

x t y t y t e e e e
c b c b c b c b

bc ac ab bc
e e

a c b a c b

   

 

   
               

    
         


  

 ( ) 1 bt ctc b a b a c
x t e e

a c b a c b
               

 

 To find the peak time, now set the derivative of ( )x t  to zero. 

     ( ) 0
( )

p p p pbT cT bT cT

p

bc b a bc a c bc
x T e e b a e a c e

a c b a c b a c b
                           

  

Setting the term in square brackets to zero gives 

    p pbT cTb a e c a e     

Taking the natural log of both sides of this equation and solving for pT  gives 

 

       
   

   

ln ln ln ln

ln ln

( ) ln ln

p pbT cT

p p

p

b a e c a e

b a bT c a cT

c b T c a b a

     

     

     

 

  
   ln ln

p

c a b a
T

c b

  
 


 (25) 

Note that Eq. (25) provides a solution for pT  only if c b a  . This means the zero must be located to the right 

of the two real poles. The percent overshoot for these systems is defined to be 

  % 100 ( ) 1 100 p pbT cT

p

c b a b a c
OS x T e e

a c b a c b
                   

    c b a    (26) 

 To check these results, consider the following system. 

      
10( 1)

( 2)( 5)

X bc s a s
s

R a s b s c s s

             
  (27) 

Using Eqs. (25) and (26) with 5c  , 2b  , and 1a  , the peak time and percent overshoot of this system are 

 
       ln ln ln 5 1 ln 2 1

0.462 (sec)
3p

c a b a
T

c b

     
  


 (28) 
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2(0.462) 5(0.462)

0.9242 2.31

2 1 1 5
% 100 100 5 2

5 2 5 2

100
5 8 % 39.7%

3

p pbT cTc b a b a c
OS e e e e

a c b a c b

e e OS

   

 

                                        

     

 (29) 

 Fig. 8 below shows the unit step response of three systems with transfer functions of the following form with 

values of  1, 3,10a  .   

      
 10 ( )

( 2)( 5)

a s aX bc s a
s

R a s b s c s s

             
   2, 5b c    (30) 

Note that for the systems with a b , the system exhibits no overshoot. This is consistent with the fact that Eq. 

(25) for peak time has no solution if a b . However, the system with a b  does have overshoot. The measured 

peak time and percent overshoot shown for the system having 1a   are consistent with those calculated above in 

Eqs. (28) and (29). 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Unit Step Response for Transfer Functions of Form Shown in Eq. (30)


