Elementary Engineering Mathematics
Introduction to Differential Equations in Mechanical Engineering

Differential equations are used to model (simulate) the response of physical systems. Their
solutions allow us to predict the response of these systems without first building a prototype for
testing. When used in this way, we refer to these equations as mathematical models. These
models can be used to simulate the response of very complex systems. The design of
automobiles, airplanes, bridges, chemical plants, electronic circuits, power grids, biomedical
devices, road systems (for improved traffic flow), and many others depend on them heavily.

Unfortunately, most differential equations do not have readily obtainable analytical solutions;
however, they can be solved numerically using computer programs that employ a variety of
numerical methods. As powerful as these methods are, it is often difficult to use them to draw
general conclusions (and develop insight) about the many types of responses a system can
exhibit. This is because we can only observe one solution at a time.

There are many classes of differential equations, however, for which we can find analytical
solutions, and these solutions often provide reasonable predictions of the response of real
systems. These solutions can be useful for developing insight into the nature of a system’s
response. In these notes, we consider the solutions of second-order, ordinary differential

equations with constant coefficients.

Mass-Spring-Damper System

m : mass of the block
k : spring stiffness ( Jo = —kx) 2,
dx s ——
¢ : damping coefficient | f,, =-c—=—cx | |Equilibrium ke
P dt Position  “¢7)

. . > —
f(t) : applied external force (input)
¢ : unstretched (natural) length of spring X
x,, - static equilibrium position of mass e m
X : mass position relative to equilibrium position

dx l
X : v=—, velocity of the mass

di g s
. dv d’x .
X . a=—=——, acceleration of the mass

dt dt
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Static Equilibrium

ﬁ =kx
P eq
For the mass to be in static equilibrium, the sum of the forces T

must be zero. We can use this fact to find the equilibrium

position of the mass under its own weight.

+V ) F=mg—kx,=0 = x, =mglk

Differential Equation of Motion

equation of motion of the mass. This equation can be used to

(1) l
W:mg

Using Newton’s second law, we can find the differential ECx x"q)T Alxci.

predict the motion of the mass under a variety of conditions.

+¢ZF:f(r)+yz§—k(x+

=

Note that static forces are not present in this equation.

mi +cx + kx=f(1t)

eq)—cx:ma:mx |
x(1)

(2) J J’
f(@) W =mg

The solution of this equation can be used to predict the forced response of the system relative

to the equilibrium position. The free response of the system is described by solving the equation

with f(¢#)=0. In either case, to get a unique solution, we must specity the initial conditions,

that is, we must specify x(0) the initial position of the mass and v(0) = x(0) the initial velocity

of the mass.

Eq. (2) is an example of a second-order, linear, constant coefficient ordinary differential

equation. In the following sections, we learn how to selve these types of equations.

Solving for Free Response ( /(1) =0)

Ifweset f(¢) to zero, Eq. (2) is called a homogeneous differential equation, and its solution

is called the homogeneous solution. We can find this solution using the following steps.

1. Substitute x(¢) = Ae"’ into the differential equation and find the conditions on 4 and s for

this to be a solution to the equation.

x(t)=Ae”

) dcx d
= X()=v(t)=—=—
x(1)=v(?) i

(Aes’) = Ase”
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. st _ dV _ d st 2 st
x(t)=v(t)=Ase” = i(t)=a(t)= ” E(Ase ) As’e

Substituting these results into the differential equation gives

O:m)'c'+c)'c+kx:m(Asze”)ch(Ase“)+k(Aest)

= (ms2 +cs + k)Ae”

For a non-zero solution, we require s to satisfy the equation |ms” +cs + k =0|. This is

called the characteristic equation of the system. There is no condition on A.

2. Find the roots of the characteristic equation and determine the type of response.

ms’+es+k=0 = s2+(%)s+%20

Using the quadratic formula,

- (5 -(5)

2m

Case 1: real, unequal roots, |5 > \/% (over-damped)

S, =—5—* (L)z — (i) (two different real roots)
1,2 2m 2m m

Case 2: real, equal roots, |5 = \/% (critical damping)

s, =8, = —5=| (two identical real roots)

Case3: complex roots, |5 < \/% (under-damped)

S, == ti N % - 2— tiw,| (a pair of complex conjugate roots)

The frequency @, = 4|% — (ﬁ)2 is the frequency in (rad/s) of the damped response. 1f the

damping is zero (¢ =0), then the frequency of the response is @, = \/% (rad/s). This is

called the system’s natural frequency.
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The types of solutions for each of these cases are summarized in the following table.

T f T f
Case TPe o ype? © Form of Solution
Roots Motion
Real
1 . Over-damped | x(7) = de’V + Be2!
unequal
2 Real, equal Critically x(t) = Ae’’ + Bte*'
damped
Complex Under- x(t)=e ) [Asin(w, 1)+ Beos(w, 1)]

conjugates damped o = /i_<2L)2
d m m

3. Finally, as we saw in earlier notes, the coefficients A and B are determined by applying

the initial conditions, x(0) = x, and x(0) =v,.

Example 1:
Given: m=0.5 (slug), c =15 (Ib-s/ft), k=50 (Ib/ft), x, =0.25 (ft), v, =5 (ft/s)
Find: The displacement function x(z)

Solution:

Using the quadratic formula, we tind the roots of the characteristic equation.

=) ()=t ot 8 = T v diternt et oo

Given these real, unequal roots, the displacement function can be written as follows.

X(t) — Ae—3.82t + Be—26.18t

Now we can apply the initial conditions:

=A4+B=0.25

t=0

x(O) _ (Ae—3.82t +Be—26.18t)

. d —-3.82¢ —26.18¢ j -3.82¢ -26.18¢
x(0)=| —| Ade + Be =(-3.824e —26.18Be

t=0

t=0

=-3.824-26.18B
=5
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Or,

1 1 A 0.25 A 0.5163
= f— I~
-3.82 -26.18||B 5 B —-0.2663

Using the above results, the displacement function x(¢) is as follows.

x(1) = (0.5163)e™* —(0.2663)e "™ (ft)

Example 2:
Given: m=0.5 (slug), ¢ =5 (Ib-s/ft), k=50 (Ib/ft), x, =0.25 (ft), v, =5 (ft/s)

Find: The displacement function x(¢)

Solution:

Using the quadratic formula, we find the roots of the characteristic equation.

S12 :_ﬁi (ﬁ)z _(%) = _(2><%).5)i \/( 2><?).5 )2 _O_O =3 +\/—51

Given these complex roots, the solution is of the following form.

x(1) = e ) [ Asin(w, 1) + Beos(a, 1)] = ¢ [A sin(\/75£) + Beos(\/75 t)]

Now we can apply the initial conditions:

x(0) = ( (ame [ Asin(w, 1) + Bcos(w, t)]) =B=0.25

And, using the product rule for differentiation,

x(O)z{ [ 4sin(\/751) + Beos(T5 t)])}

{ Asm(\/— 5H))+B cos(\/_ t)]} +

{€_St [\/%A cos('75¢)=~/75B Sin(\/%t)}},ﬂ)
=—5B+754

=5

Solving gives, A= 0.7217 and B =0.25. So, our under-damped solution is as follows.

x(t)~e™ [0.7217sin(ﬁ £)+0.25cos(+\75 t)] (ft)
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In previous notes, we found this could be written as a single, phase-shifted sine function.

That is,

x(1)=0.7638 ¢”*' sin((8.6603 )¢ +0.3335) (ft)

Solving for the Forced Response (f'(¢) # 0)

To find the forced response, we start by finding the “particular solution”. The particular

solution can sometimes be found using the method of undetermined coefficients provided the

forcing function f(¢) has a simple form. The forced response is the sum of x,(¢) the particular

solution and x,,(¢) the solution of the homogenous equation (steps 1 and 2, only).

x(#) = xp(1) + x,,(2)

3)

The coefficients of x,,(¢) are found by applying the initial conditions x(0) =x, and x(0)=v,.

Forms of the particular solution for some common engineering forcing functions are given in

the table below. In the method of undetermined coefficients, we substitute the general form of

x,(¢) back into the differential equation and solve for the unknown coefficients (referred to as

B,, B, and B, in the table below).

f(@) Form™ of x,(¢)
constant a, B,t"
linear at+a, (Bt +B,)t"
quadratic at’ +at+a, (8212 + Bt + B, )t”
exponential ae’ (Bleﬂ ’ )t”

sine or cosine

asin(wt) or acos(wt)

| B sin(wt)+ B, cos(wt) |t"

exponential, sine
or cosine product

ae’ sin(wt)

B

or ae ’cos(a)t)

e’ | B;sin(wt)+ B, cos(wt) |¢"

" The exponent n is the smallest, non-negative integer so that every term in
x,(?) is different from every term in x,,(¢). That is, n =0 unless the same type

of term appears in x,,(?).
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Example 3:
Given: m=0.5 (slug), c=15(b-s/ft), k=50 (Ib/ft), x, =025 (ft), v,=5({tls),
f(t)=30sin(5¢)
Find: (a) the form of the homogeneous solution x,(¢); (b) the particular solution x,(¢); and
(c) the displacement function x(¢)

Solution:

(a) Setting f(¢) =0, our differential equation is as it was in Example 1 above. The general

form of that solution is the form or our homogeneous solution.

x,, ()= Ae” " + Be*"*'| (over-damped response function)

(b)Given f(¢)=3sin(10¢) is not of the form of any term in our homogeneous solution, we

set n =0, and the particular solution has the form

xp(¢t) = Dsin(5¢) + E cos(5¢)

We find values for the coefficients D and E by substituting the form of x,(¢) into the

differential equation and equating coefficients of like terms. First, we differentiate x,().

X, (1) = %(D sin(5¢) + E cos(5¢)) =5Dcos(5¢) — 5 Esin(5¢)

¥,(t) = %(SD cos(51) — 5Esin(5¢)) =—25Dsin(5¢) — 25 E cos(5¢)

Substituting into the differential equation: (mX + cx + kx = f(¢)

mi, + cx, + kx, = m(-25Dsin(5¢t) — 25E cos(5¢) )+ ¢(5Dcos(5¢) — 5Esin(51))
+k (D sin(5¢) + E cos(5 t))
=(-25mD —5cE + kD)sin(5¢t) + (-25mE + 5¢D + kE ) cos(10¢)
=30sin(5¢)
Comparing coefficients of the sine and cosine functions on each side of the equation gives

two algebraic equations that can be solved for D and E.
(k—25m) —5c¢ D| 1375 -I5([{D| |30 - D| | 0.16
5c (k=25m)||E] | 75 375||E] |0 E| [-032
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Given these results, the particular solution is as follows.

Xp(t)=0.16s1n(5¢) — 0.32cos(5¢)

(¢) The form of the complete solution is the sum of the homogeneous and particular

solutions.

x(2)=x, () +x,(t) = A4e”>*' + Be**"*" +0.16sin(5¢) — 0.32 cos(5¢)

To find the coefficients 4 and B, we apply the initial conditions.

x(0)=| e + Be ™™™ +0.16sin(5¢) - 0.32c0s(5¢) | = A+B-032=0.25

t=0

x(0) = (%[Aem’ + Be '™ +0.16sin(5¢) —0.32cos(5 t)n

t=0

=(-3.824¢7% —26.18Be """ +(5x0.16)cos(51) + (5% 0.32)sin(51) )

=-3.824-26.18B+0.8
=5

1 1 Al _Jos7] A| ] 0855
|—3.82 —26.18||B| |42 B| |-0.2852

Finally, the complete solution is as follows.

t=0

Or,

x(#)=x, (1) +x,(t) =0.855¢7% —0.2852¢7>*"* + 0.16sin(5¢) — 0.32 cos(5¢)

transient terms steady-state terms

This solution has both transient and steady-state terms. The transient terms go to zero as
time progresses, but the steady-state terms do not. The solution is shown in the plot below.
Approximately the first one second has contributions from the transient and steady-state
terms. After that time, the transient terms are nearly zero, and the solution is dominated by

the steady-state terms.
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Response of Overdamped System to Initial Conditions and Forcing Function
T f I I I

0.5

steady-state response

Displacement x(t) (ft)

transient response

0 0.5 1 1.5 2 25 3 3.5 4
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