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Elementary Engineering Mathematics 
Introduction to Differential Equations in Mechanical Engineering 

 Differential equations are used to model (simulate) the response of physical systems. Their 

solutions allow us to predict the response of these systems without first building a prototype for 

testing. When used in this way, we refer to these equations as mathematical models. These 

models can be used to simulate the response of very complex systems. The design of 

automobiles, airplanes, bridges, chemical plants, electronic circuits, power grids, biomedical 

devices, road systems (for improved traffic flow), and many others depend on them heavily. 

 Unfortunately, most differential equations do not have readily obtainable analytical solutions; 

however, they can be solved numerically using computer programs that employ a variety of 

numerical methods. As powerful as these methods are, it is often difficult to use them to draw 

general conclusions (and develop insight) about the many types of responses a system can 

exhibit. This is because we can only observe one solution at a time. 

 There are many classes of differential equations, however, for which we can find analytical 

solutions, and these solutions often provide reasonable predictions of the response of real 

systems. These solutions can be useful for developing insight into the nature of a system’s 

response. In these notes, we consider the solutions of second-order, ordinary differential 

equations with constant coefficients. 

Mass-Spring-Damper System 
m   : mass of the block 

k  : spring stiffness  spf k x   

c  : damping coefficient damper

dx
f c c x

dt
     
 

  

( )f t  : applied external force (input) 

u  : unstretched (natural) length of spring 

eqx  : static equilibrium position of mass 

x  : mass position relative to equilibrium position 

x  : 
dx

v
dt

 , velocity of the mass 

x  : 
2

2

dv d x
a

dt dt
  , acceleration of the mass 
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Static Equilibrium 

 For the mass to be in static equilibrium, the sum of the forces 

must be zero. We can use this fact to find the equilibrium 

position of the mass under its own weight.  

 0 /eq eqF mg k x x mg k        (1) 

Differential Equation of Motion 

 Using Newton’s second law, we can find the differential 

equation of motion of the mass. This equation can be used to 

predict the motion of the mass under a variety of conditions. 

 ( )F f t mg    eqk x x   cx ma mx     

 ( )m x c x k x f t      (2) 

Note that static forces are not present in this equation. 

 The solution of this equation can be used to predict the forced response of the system relative 

to the equilibrium position. The free response of the system is described by solving the equation 

with ( ) 0f t  . In either case, to get a unique solution, we must specify the initial conditions, 

that is, we must specify (0)x  the initial position of the mass and (0) (0)v x   the initial velocity 

of the mass. 

 Eq. (2) is an example of a second-order, linear, constant coefficient ordinary differential 

equation. In the following sections, we learn how to solve these types of equations. 

Solving for Free Response  ( ) 0f t   

 If we set ( )f t  to zero, Eq. (2) is called a homogeneous differential equation, and its solution 

is called the homogeneous solution. We can find this solution using the following steps. 

1. Substitute ( ) s tx t Ae  into the differential equation and find the conditions on A and s for 

this to be a solution to the equation. 

   ( ) ( ) ( )s t st stdx d
x t Ae x t v t Ae Ase

dt dt
       
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    2( ) ( ) ( ) ( )st st stdv d
x t v t Ase x t a t Ase As e

dt dt
         

 Substituting these results into the differential equation gives 

  
     

 

2

2

0 st st st

st

m x c x k x m As e c Ase k Ae

ms cs k Ae

     

  

 
 

For a non-zero solution, we require s to satisfy the equation 2 0ms cs k   . This is 

called the characteristic equation of the system. There is no condition on A. 

2. Find the roots of the characteristic equation and determine the type of response. 

   2 20 0c k
m mms cs k s s        

 Using the quadratic formula, 

  
       

2
2

1,2 2 2

4

2

c c k
m m m c c k

mm ms
  

      

 Case 1: real, unequal roots, 2
c k

mm   (over-damped) 

     2

1,2 2 2
c c k

mm ms      (two different real roots) 

 Case 2: real, equal roots, 2
c k

mm   (critical damping) 

  1 2 2
c
ms s    (two identical real roots) 

 Case3: complex roots, 2
c k

mm   (under-damped) 

     2

1,2 2 2 2 d
c k c c

mm m ms i i        (a pair of complex conjugate roots) 

The frequency  2

2d
k c
m m    is the frequency in (rad/s) of the damped response. If the 

damping is zero  0c  , then the frequency of the response is n
k
m   (rad/s). This is 

called the system’s natural frequency. 
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The types of solutions for each of these cases are summarized in the following table. 

Case 
Type of 
Roots 

Type of 
Motion 

Form of Solution 

1 
Real, 

unequal 
Over-damped tsts BeAetx 21)(   

2 Real, equal 
Critically 
damped 

( ) st stx t Ae Bt e   

3 
Complex 

conjugates 
Under-
damped 

   2( ) sin( ) cos( )
c

m t

d dx t e A t B t    

 2

2d
k c
m m    

 

3.  Finally, as we saw in earlier notes, the coefficients A and B are determined by applying 

the initial conditions, 0(0)x x  and 0(0)x v . 

Example 1: 

Given:  0.5 (slug)m  , 15 (lb-s/ft)c  , 50 (lb/ft)k  , 0 0.25 (ft)x  , 0 5 (ft/s)v   

Find:  The displacement function ( )x t  

Solution: 

Using the quadratic formula, we find the roots of the characteristic equation. 

        2 2

1,2
15 15 50

2 2 2 0.5 2 0.5 0.5

3.82

26.18
c c k

mm ms  
 

           
 (two different real roots) 

Given these real, unequal roots, the displacement function can be written as follows. 

  3.82 26.18( ) t tx t Ae Be    

Now we can apply the initial conditions: 

   3.82 26.18

0
(0) 0.25t t

t
x Ae Be A B 


      

  

 3.82 26.18 3.82 26.18

0
0

(0) 3.82 26.18

3.82 26.18

5

t t t t

t
t

d
x Ae Be Ae Be

dt

A B

   




         
  



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Or, 

  
1 1 0.25 0.5163

3.82 26.18 5 0.2663

A A

B B

         
                    

 

Using the above results, the displacement function ( )x t  is as follows. 

     3.82 26.18( ) 0.5163 0.2663  (ft)t tx t e e    

Example 2: 

Given:  0.5 (slug)m  , 5 (lb-s/ft)c  , 50 (lb/ft)k  , 0 0.25 (ft)x  , 0 5 (ft/s)v   

Find:  The displacement function ( )x t  

Solution: 

Using the quadratic formula, we find the roots of the characteristic equation. 

        2 2

1,2
5 5 50

2 2 2 0.5 2 0.5 0.5 5 75c c k
mm ms i             

Given these complex roots, the solution is of the following form. 

    2 5( ) sin( ) cos( ) sin( 75 ) cos( 75 )
c

m t t
d dx t e A t B t e A t B t          

Now we can apply the initial conditions: 

     2

0
(0) sin( ) cos( ) 0.25

c
m t

d d
t

x e A t B t B 


     

And, using the product rule for differentiation, 

 

 
 
 

5

0

5

0

5

0

(0) sin( 75 ) cos( 75 )

5 sin( 75 ) cos( 75 )

75 cos( 75 ) 75 sin( 75 )

5 75

5

t

t

t

t

t

t

d
x e A t B t

dt

e A t B t

e A t B t

B A













      

     

  

  




  

Solving gives, 0.7217A   and 0.25B  . So, our under-damped solution is as follows. 

 5( ) 0.7217sin( 75 ) 0.25cos( 75 )  (ft)tx t e t t      
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In previous notes, we found this could be written as a single, phase-shifted sine function. 

That is, 

    5( ) 0.7638 sin 8.6603 0.3335  (ft)tx t e t   

Solving for the Forced Response  ( ) 0f t   

 To find the forced response, we start by finding the “particular solution”. The particular 

solution can sometimes be found using the method of undetermined coefficients provided the 

forcing function ( )f t  has a simple form. The forced response is the sum of ( )Px t  the particular 

solution and ( )Hx t   the solution of the homogenous equation (steps 1 and 2, only). 

 ( ) ( ) ( )P Hx t x t x t   (3) 

The coefficients of ( )Hx t  are found by applying the initial conditions 0(0)x x  and 0(0)x v . 

 Forms of the particular solution for some common engineering forcing functions are given in 

the table below. In the method of undetermined coefficients, we substitute the general form of 

( )Px t  back into the differential equation and solve for the unknown coefficients (referred to as 

0B , 1B , and 2B  in the table below). 

 ( )f t  Form* of ( )Px t  

constant 0a  0
nB t  

linear 1 0a t a   1 0
nB t B t  

quadratic 2
2 1 0a t a t a    2

2 1 0
nB t B t B t   

exponential tae   1
t nB e t  

sine or cosine  sina t  or  cosa t     1 2sin cos nB t B t t     

exponential, sine 
or cosine product 

 sintae t    

or    costae t   
   1 2sin cost ne B t B t t      

* The exponent n is the smallest, non-negative integer so that every term in 
( )Px t  is different from every term in ( )Hx t . That is, 0n   unless the same type 

of term appears in ( )Hx t . 
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Example 3: 

Given: 0.5 (slug)m  , 15 (lb-s/ft)c  , 50 (lb/ft)k  ,  0 0.25 (ft)x  , 0 5 (ft/s)v  , 

( ) 30sin(5 )f t t  

Find: (a) the form of the homogeneous solution ( )Hx t ; (b) the particular solution ( )Px t ; and  

(c) the displacement function ( )x t  

Solution: 

(a) Setting ( ) 0f t  , our differential equation is as it was in Example 1 above. The general 

form of that solution is the form or our homogeneous solution. 

 3.82 26.18(t) t t
Hx Ae Be    (over-damped response function) 

(b) Given ( ) 3sin(10 )f t t  is not of the form of any term in our homogeneous solution, we 

set 0n  , and the particular solution has the form 

 ( ) sin(5 ) cos(5 )Px t D t E t   

We find values for the coefficients D and E by substituting the form of ( )Px t  into the 

differential equation and equating coefficients of like terms. First, we differentiate ( )Px t . 

  ( ) sin(5 ) cos(5 ) 5 cos(5 ) 5 sin(5 )P

d
x t D t E t D t E t

dt
     

  ( ) 5 cos(5 ) 5 sin(5 ) 25 sin(5 ) 25 cos(5 )P

d
x t D t E t D t E t

dt
      

Substituting into the differential equation: ( )mx cx kx f t     

 

   
 

   

25 sin(5 ) 25 cos(5 ) 5 cos(5 ) 5 sin(5 )

sin(5 ) cos(5 )

25 5 sin(5 ) 25 5 cos(10 )

30sin(5 )

P P Pmx cx kx m D t E t c D t E t

k D t E t

mD cE kD t mE cD kE t

t

      

 

       



 

 

Comparing coefficients of the sine and cosine functions on each side of the equation gives 

two algebraic equations that can be solved for D  and E . 

 
 

 
25 5 37.5 75 30

5 25 75 37.5 0

k m c D D

c k m E E

           
                  

0.16

0.32

D

E

   
       
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Given these results, the particular solution is as follows. 

 ( ) 0.16sin(5 ) 0.32cos(5 )Px t t t   

(c) The form of the complete solution is the sum of the homogeneous and particular 

solutions. 

 3.82 26.18( ) ( ) ( ) 0.16sin(5 ) 0.32cos(5 )t t
H Px t x t x t Ae Be t t        

To find the coefficients A and B, we apply the initial conditions. 

 3.82 26.18

0
(0) 0.16sin(5 ) 0.32cos(5 ) 0.32 0.25t t

t
x Ae Be t t A B 


           

  

3.82 26.18

0

3.82 26.18

0

(0) 0.16sin(5 ) 0.32cos(5 )

3.82 26.18 (5 0.16)cos(5 ) (5 0.32)sin(5 )

3.82 26.18 0.8

5

t t

t

t t

t

d
x Ae Be t t

dt

Ae Be t t

A B

 



 



        

      

   




 

Or, 

 
1 1 0.57

3.82 26.18 4.2

A

B

     
          

0.855

0.2852

A

B

   
       

 

Finally, the complete solution is as follows. 

  3.82 26.18

transient terms steady-state terms

( ) ( ) ( ) 0.855 0.2852 0.16sin(5 ) 0.32cos(5 )t t
H Px t x t x t e e t t          

 This solution has both transient and steady-state terms. The transient terms go to zero as 

time progresses, but the steady-state terms do not. The solution is shown in the plot below. 

Approximately the first one second has contributions from the transient and steady-state 

terms. After that time, the transient terms are nearly zero, and the solution is dominated by 

the steady-state terms. 
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