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Elementary Dynamics 
Introduction to Vibrations 

 Vibrations are a very common problem in mechanical and structural systems. Vibrations can 

lead to problems with wear, material fatigue, and noise that can affect the performance of a 

system. As an introduction to this important topic, consider the following simple spring-mass-

damper (SMD) system shown below.   

 The mass m is excited by the external force ( )F t  and the linear spring and damper that are 

connected to the wall. The displacement ( )x t  is measured from the position where the spring is 

unstretched. This is known as the equilibrium position. When the mass is away from its 

equilibrium position, the linear spring applies a force proportional to the displacement ( )x t  and 

the linear damper applies a force proportional to the velocity ( )x t  as shown in the free body 

diagram. The spring coefficient k  has units of force per unit length (lb/ft or N/m), and the damper 

coefficient has unit of force per unit velocity (lb-s/ft or N-s/m). 

 

 
 
 
 
 
 
 
 
 
Summing forces in the x-direction on the free body diagram gives 
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This equation is a linear, second-order, constant coefficient, ordinary differential equation. It is 

the equation of motion of the mass and describes the motion of the mass for all time. Why? 

Free Body Diagram 
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Free, Undamped Response ( ( ) 0, 0F t c  ) 

 In the case of free, undamped response the differential equation of motion becomes 

 0
k

x x
m

   
 

  

The solution to this differential equation is ( ) sin( )nx t A t    where  (rad/s)n k m   is 

called the natural frequency of the system. So, if the mass is moved to the right and released 

from rest, it will oscillate about the equilibrium position with frequency n . The values of A and 

  depend on the initial conditions. 

 The natural frequency f  in cycles/second or Hertz (Hz) is / 2  (Hz)nf   , and the period 

of oscillation 1/T f  is the number of seconds required to complete one cycle. The plot below 

shows an example of free, undamped response for a system with 

  Physical parameters: 1 (slug)m  , 36 (lb/ft)k   

  Initial conditions: (0) 1 (ft)x  , (0) 10 (ft/s)x    

For this system, 6 (rad/sec)n k m   , 6 / 2 0.9549 (Hz)f   , and 1/ 1.047 (sec)T f  . 

Note from the plot that 1.22 0.17 1.05T     which is as expected. 
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Free, Damped Response ( ( ) 0F t  ) 

 For the case of free, damped response, the differential equation of motion becomes 

  0
c k
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To characterize the motion of this type of system, define the damping ratio 
2

c

mk
  . This 

represents the ratio of the actual damping factor c to the “critical” damping factor 2cc mk .  

In this way, the response can be characterized by the value of   as shown in the following table. 

Value Type of Response Description of Response 

0 1   Under-damped system oscillations decay with time 

1   Critically Damped system response decays with time, no oscillation 

1   Over-damped system response decays with time, no oscillation 

 
Case1: Under-damped Response (0 1  ) 

 For under-damped systems, the solution to the differential equation of motion is 

   2( ) sin( )c m t
dx t B e t    

As before, the values of B and   depend on the initial conditions. The damped frequency of 

oscillation is  22 2d n c m   . 

 The plot below shows an example of free, damped response for a system with 

  Physical parameters: 1 (slug)m  , 36 (lb/ft)k  , 2.0 (lb-s/ft)c    

  Initial conditions: (0) 1 (ft)x  , (0) 10 (ft/s)x    

For this system, 6 (rad/sec)n k m    and 5.916 (rad/s)d  . Other than the damping effect, 

these are the same parameters as for the free, undamped system above. Note from the plot the 

period of the damped oscillations is 1.22 0.15 1.07 (sec)T     which is slightly longer than the 

period of the undamped oscillations. Note also the amplitude of the first peak is less than that of 

the system without damping. 
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Case 2: Critically Damped Response ( 1  ) 

 For critically damped systems ( cc c ), the solution to the differential equation of motion can 

be written as 

  ( ) at atx t A e B t e    

where the values of A and B depend on the initial conditions. Note that in this case there is just 

enough damping to stop the oscillations from occurring. 

 The plot below shows an example of free, critically damped response for a system with 

  Physical parameters: 1 (slug)m  , 36 (lb/ft)k  , 12.0 (lb-s/ft)cc c    

  Initial conditions: (0) 1 (ft)x  , (0) 10 (ft/s)x    

Other than the damping coefficient, these are the same parameters as for the underdamped system 

shown above. Note from the plot the system approaches the equilibrium position exponentially 

and does not oscillate about it. Note also the first peak of the response is less than that of the 

underdamped system. 
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Case 3: Over-damped Response ( 1  ) 

 For over-damped systems ( cc c ), the solution to the differential equation of motion is 

  ( ) a t b tx t A e B e    

As before, the values of A and B depend on the initial conditions. Note that in this case there is 

more than enough damping to stop the oscillations from occurring. 

 The plot below shows an example of free, overdamped response for a system with 

  Physical parameters: 1 (slug)m  , 36 (lb/ft)k  , 13.0 (lb-s/ft)c    

  Initial conditions: (0) 1 (ft)x  , (0) 10 (ft/s)x    

Other than the damping coefficient, these are the same parameters as for the damped systems 

shown above. Note from the plot, as for the critically damped system, the overdamped system 

approaches the equilibrium position exponentially and does not oscillate about it. Note also the 

first peak of the response is less than that of the critically damped system. 
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Forced, Damped Response 

 In this case, the differential equation of motion is 

  
( )c k F t

x x x
m m m

        
   

  . 

The solution of this differential equation is of the form 

 ( ) ( ) ( )H Px t x t x t   

Here, ( )Hx t  represents the “homogeneous” solution (i.e. the free response when ( ) 0F t  ), and 

( )Px t  represents the “particular” solution. The particular solution has the same form as the 

forcing function ( )F t . 

Definitions 

Transient Response: The part of ( )x t  that decays with time. 

Steady-State Response: The part of ( )x t  that remains after all decaying parts have 
vanished. 
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 The plot below shows an example of forced, damped response for a system with 

  Physical parameters: 1 (slug)m  , 36 (lb/ft)k  , 2.0 (lb-s/ft)c    

  Initial conditions: (0) 1 (ft)x  , (0) 10 (ft/s)x    
  Forcing function: ( ) 5sin(3 )  (lb)F t t   

These system parameters and initial conditions are the same as for the example underdamped 

system shown above, but the system now also responds to a sinusoidal forcing function. The total 

response is a superposition (sum) of the responses due to the nonzero initial conditions and the 

forcing function. The response to initial conditions will decay to zero and is called the transient 

response. The response to the sinusoidal forcing function continues for as long as the force is 

applied and is called the steady-state response. 

 In the plot below, note the initial part of the response has a period of 

initial 1.19 0.16 1.03 (sec)T     which is consistent with the response of the unforced system, and 

the later part of the response has a period of later 8.97 6.88 2.09 (sec)T     which is consistent 

with the forcing function whose frequency is close to 0.5 (Hz) . 

 

 


