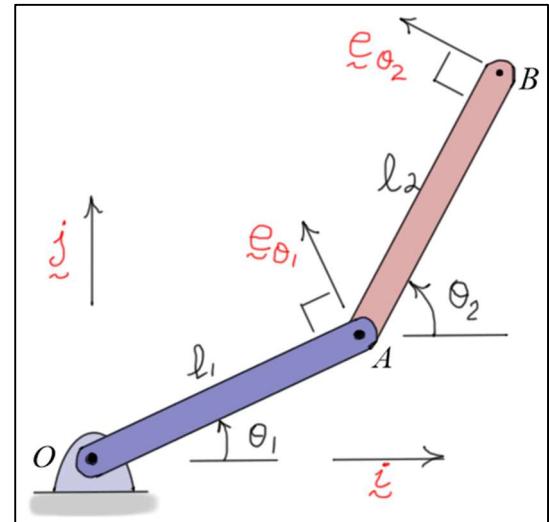


Elementary Dynamics Example #30: (Rigid Body Kinematics – Relative Velocity)

Given: $\ell_1 = \ell_2 = 0.4$ (m)

$$\theta_1 = 25 \text{ (deg)}, \omega_1 = \dot{\theta}_1 = 10 \text{ (r/s) CCW}$$


$$\theta_2 = 60 \text{ (deg)}, \omega_2 = \dot{\theta}_2 = 5 \text{ (r/s) CCW}$$

Find: v_B the velocity of endpoint B

Solution:

Using the relative velocity equation for two points fixed on a rigid body,

$$\begin{aligned}
 v_B &= v_A + v_{B/A} = \underbrace{v_O}_{\text{zero}} + v_{A/O} + v_{B/A} \\
 &= [\omega_{OA} \times r_{A/O}] + [\omega_{AB} \times r_{B/A}] \\
 &= [\omega_1 \hat{k} \times \ell_1 (\cos(25) \hat{i} + \sin(25) \hat{j})] + [\omega_2 \hat{k} \times \ell_2 (\cos(60) \hat{i} + \sin(60) \hat{j})] \\
 &= \ell_1 \omega_1 \underbrace{(-\sin(25) \hat{i} + \cos(25) \hat{j})}_{\varepsilon_{\theta_1}} + \ell_2 \omega_2 \underbrace{(-\sin(60) \hat{i} + \cos(60) \hat{j})}_{\varepsilon_{\theta_2}} \\
 &= (-1.69047 \hat{i} + 3.62523 \hat{j}) + (-1.73205 \hat{i} + 1 \hat{j}) \\
 \Rightarrow v_B &\approx -3.42 \hat{i} + 4.63 \hat{j}
 \end{aligned}$$

Notes:

1. The direction of $v_{A/O}$ the velocity of A with respect to O is in the ε_{θ_1} direction which is **perpendicular** to link OA as shown.
2. The direction of $v_{B/A}$ the velocity of B with respect to A is in the ε_{θ_2} direction which is **perpendicular** to link AB as shown.
3. The directions of each of these relative velocities is determined by the **cross** (or vector) **product**. In each case, the direction is perpendicular to **both** the angular velocity vector and the relative position vector of the two points, O and A for the first link and A and B for the second link.