

Introductory Control Systems

Introduction to Root Locus Diagrams

The **dynamic characteristics** (transient response and stability) of a linear system are dependent on the **location** of the **poles** of the system. When a compensator (controller) is used to provide closed-loop control of a system, the **poles** of the **closed-loop transfer function** determine the system's dynamic characteristics. The **location** of these poles are **functions** of the compensator's parameters. The root locus method provides a means to **track** the locations of the poles of the closed-loop system as a function of a **single parameter** of the system or compensator.

A **root locus** is the **path** of a pole in the s-plane (complex plane) as a function of a single parameter. A **root locus diagram** provides the **paths** of **all poles** of the system as a function of that parameter. Using this method, an analyst can choose values of the parameter that will yield **acceptable** dynamic characteristics.

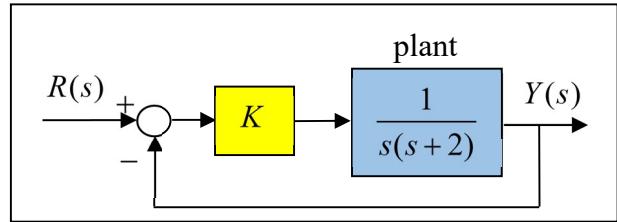
A **root locus diagram** can be **generated** from **graphical considerations** or by using **computer software**. Clearly a design engineer will prefer to generate the details of these diagrams using a computer program but understanding of the graphical methods can provide the analyst with a better **understanding** of **how** the general characteristics of a root locus diagram will change as the type of compensator is altered. With this motivation, the notes that follow will discuss both approaches.

Root Locus Diagrams – Basic Numerical Method

As shown in the notes entitled “What is a Root Locus Diagram?”, the most **basic method** for generating a root locus diagram is to find the **characteristic equation** of the system as a **function** of some parameter, say K , and then proceed to **calculate the roots** of the equation for a series of values of K . The roots are then plotted to form the root locus diagram. The **movement** of the poles are **easily tracked**, but **little information** is available about how the diagram will change as the form of the controller is altered.

Root Locus Diagrams – Basic Graphical Method

To illustrate the **basic graphical method**, consider the simple closed-loop system shown in the diagram. The closed-loop transfer function of the system is



$$\frac{Y}{R}(s) = \frac{G}{1+GH(s)} = \frac{\frac{K}{s(s+2)}}{1 + \frac{K}{s(s+2)}} = \frac{K}{s(s+2) + K}$$

The **characteristic equation** of the system can then be written as

$$1 + K \left(\underbrace{\frac{1}{s(s+2)}}_{P(s)} \right) = 0 \quad \text{or} \quad s(s+2) + K = 0 \quad (1)$$

As will be discussed in subsequent notes, the first of these is considered the **standard form** for root locus diagrams. The polynomial ratio $P(s)$ is defined as the multiplier of the parameter K in the characteristic equation (Eq. (1)). Generally, both the numerator and denominator of $P(s)$ will be polynomials.

To generate the root locus diagram ($K \geq 0$) for this system, first rewrite the second form of the characteristic equation as follows

$$s(s+2) = -K$$

Now replace “ s ” and “ $s+2$ ” in this equation with the polar forms (recall that $j = \sqrt{-1}$)

$$s = a_1 e^{j\alpha_1} \quad \text{and} \quad s + 2 = a_2 e^{j\alpha_2}$$

Substituting these forms into the characteristic equation gives

$$a_1 a_2 e^{j(\alpha_1 + \alpha_2)} = -K + 0j = K e^{jn\pi}$$

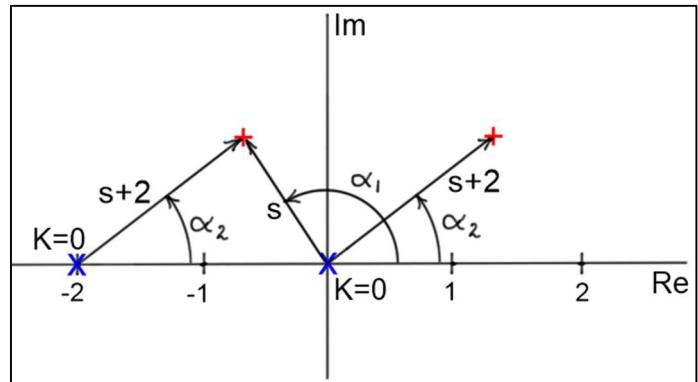
This equation provides the following two scalar equations

$$a_1 a_2 = K \quad \text{and} \quad \alpha_1 + \alpha_2 = n\pi \quad (n = \pm 1, \pm 2, \dots) \quad (2)$$

So, if a point in the s -plane is a root of the characteristic equation, it must satisfy these two equations. The paths of the poles start with $K = 0$ and proceed as $K \rightarrow \infty$. Note from the characteristic equation that if $K = 0$, $s = 0$ and $s = -2$.

Note on Geometry in the s -Plane:

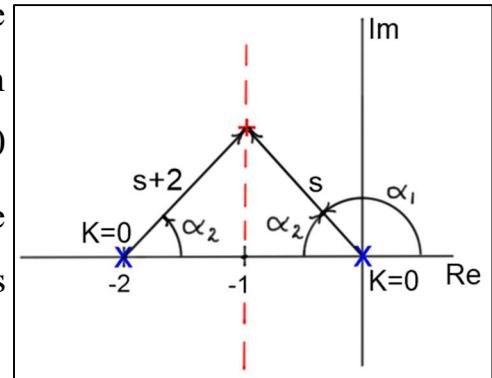
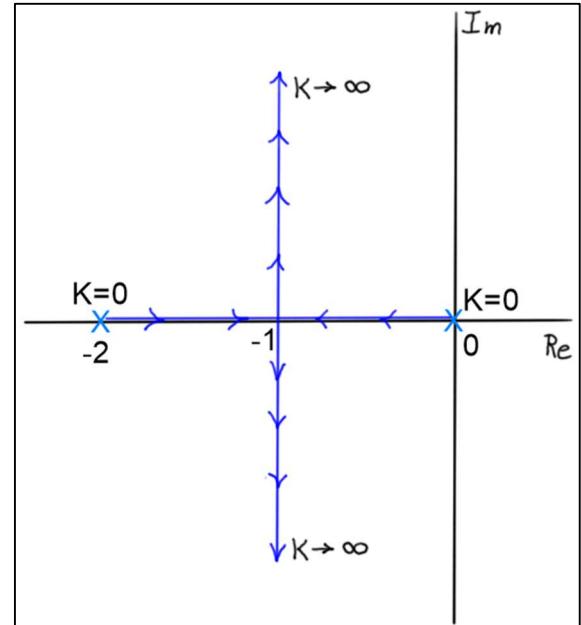
The diagram to the right shows a geometric representation of the terms “ s ” and “ $s + 2$ ” in the s -plane. The vectors are shown with both tails at the origin and with both ends at “ s ”. When both ends are at “ s ”, the tails start at the poles of $P(s)$ at $s = 0$ and $s = -2$.



Locations on the Root Locus Diagram

For a point to be on the root locus diagram of the example system shown above, the second of Eqs. (2) requires the sum of the angles α_1 and α_2 must be a multiple of π (or 180 degrees). The diagram to the right shows that all points on the dashed red line crossing the real axis at $s = -1$ satisfy this criterion.

At any point on the dashed red line that is off the real axis, the vectors for “ s ” and “ $s + 2$ ” form an isosceles triangle as shown. Both angles are non-zero, but their sum is π . Note also that any point on the real axis in the range $-2 < s < 0$ also satisfies the angle criterion. At these points $\alpha_1 = \pi$ and $\alpha_2 = 0$. Note finally that the value of K increases as the points move further away from the starting points at $s = 0$ and $s = -2$. The final root locus diagram has two branches and is shown in the diagram to the right.



Values of K on the Two Branches

The value of K at any point on the branches can be calculated using the first of Eqs. (2). The values in following table were found using this approach.

Location	s	$s + 2$	a_1	a_2	K
$-0.5 + 0j$	$-0.5 + 0j$	$1.5 + 0j$	0.5	1.5	0.75
$-1.5 + 0j$	$-1.5 + 0j$	$0.5 + 0j$	1.5	0.5	0.75
$-1 + 0j$	$-1 + 0j$	$1 + 0j$	1	1	1
$-1 + 1j$	$-1 + 1j$	$1 + 1j$	$\sqrt{2}$	$\sqrt{2}$	2
$-1 - 1j$	$-1 - 1j$	$1 - 1j$	$\sqrt{2}$	$\sqrt{2}$	2

The table shows the system has ***two real, unequal poles*** for $0 < K < 1$, ***two real, equal poles*** for $K = 1$, and a ***pair of complex conjugate poles*** for $K > 1$. Hence, the closed-loop system is ***over-damped*** for $0 < K < 1$, ***critically damped*** for $K = 1$, and ***under-damped*** for $K > 1$.

Closure

Following the above procedure for ***more complex systems*** would be ***very tedious*** and ***time consuming***. Fortunately, there is a ***much faster, less detailed approach*** that can be taken. That approach is ***presented*** and is ***applied*** to a few example systems in the notes that follow. Recall the ***motivation*** for sketching a root locus diagram is for the analyst to have a ***clearer understanding*** of the general impact various forms of control will have on a system. Once a candidate method is found, more ***detailed root locus diagrams*** can be generated using ***computer software***.