

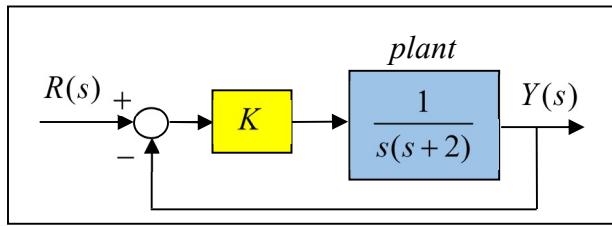
Introductory Control Systems

Root Locus (RL) Diagram Examples

1. Sketch the root locus diagram for the parameter K for the closed loop system shown in the diagram.

1) Characteristic Equation:

$$1 + GH(s) = 1 + K \left[\frac{1}{s(s+2)} \right] = 0$$



2) Zeros of $P(s)$: none ($n_z = 0$)

Poles of $P(s)$: $s = 0, -2$ ($n_p = 2$) \Rightarrow Number of branches = 2

Number of asymptotes: $n_A = n_p - n_z = 2$

3) Poles on the real axis: $-2 \leq s \leq 0$

Pole at $s = 0$ moves to the **left** and pole at $s = -2$ moves to the **right**, so there must be a break-away point in the range $-2 \leq s \leq 0$.

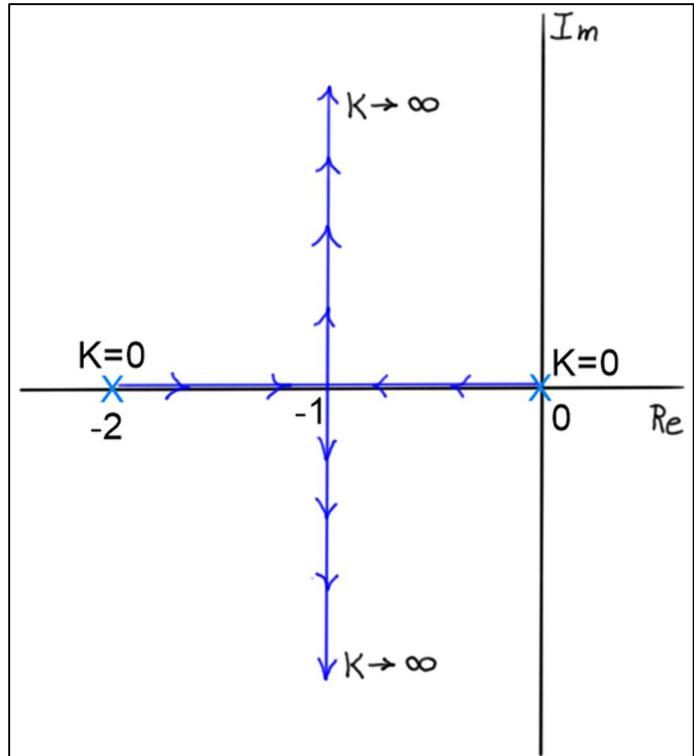
4) Asymptotes: $\phi_A = \left(\frac{2m+1}{n_A} \right) 180 = \begin{cases} 90 \text{ (deg)} & (m=0) \\ 270 \text{ (deg)} & (m=1) \end{cases}$; $\sigma_A = \frac{0-2}{n_A} = \frac{-2}{2} = -1$

5) Break Points:

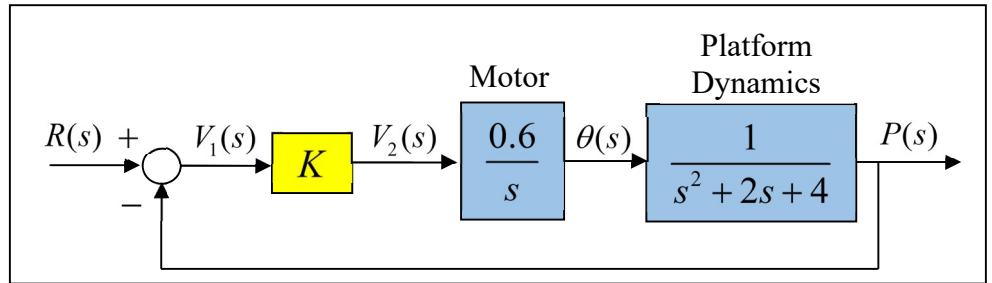
$$\frac{dP}{ds} = \frac{-1(2s+2)}{s^2(s+2)^2} = 0$$

$$\Rightarrow 2s+2=0$$

$$\Rightarrow s = -1$$



2. Sketch the root locus diagram for the parameter K for the closed loop system shown.



1) Characteristic Equation:

$$1 + GH(s) = 1 + K \left[\frac{0.6}{s(s^2 + 2s + 4)} \right] = 0$$

2) Zeros of $P(s)$: none ($n_z = 0$)

Poles of $P(s)$: $s = 0, -1 \pm 1.732j$ ($n_p = 3$) \Rightarrow Number of branches = 3

Number of asymptotes: $n_A = n_p - n_z = 3$

3) Poles on the real axis: $-\infty < s \leq 0$. Pole at $s = 0$ moves to the **left**; poles move to infinity along the **negative real axis** (which is one of the asymptotes).

4) Asymptotes: $\phi_A = \left(\frac{2m+1}{n_A} \right) 180 = 60, 180, 300$ (deg), $\sigma_A = \frac{0-1-1}{3} = -2/3$

Asymptotes at 60 and 300 deg. are shown in red.

5) Break Points: (break points must be on the real axis)

$$\frac{dP}{ds} = \frac{0.6(3s^2 + 4s + 4)}{s^2(s^2 + 2s + 4)^2} = 0 \Rightarrow 3s^2 + 4s + 4 = 0$$

$$\Rightarrow s = -0.667 \pm 0.94j \Rightarrow \text{no break points}$$

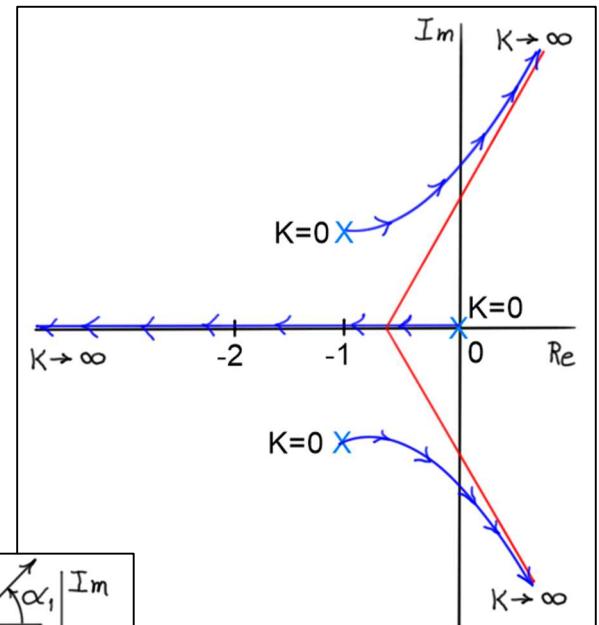
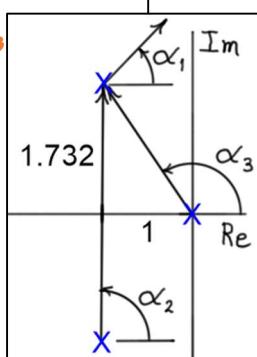
6) Exit angle from the upper complex pole:

$$\alpha_1 + \alpha_2 + \alpha_3 = 180$$

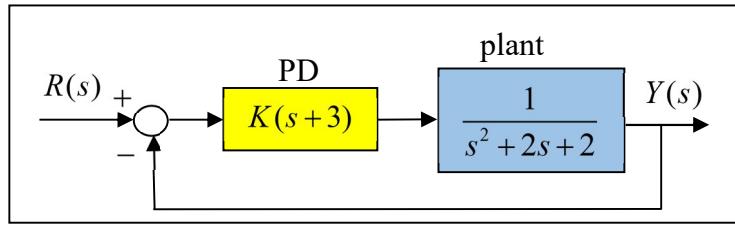
$$\alpha_1 + 90 + (180 - \tan^{-1}(1.732)) = 180$$

$$\Rightarrow \alpha_1 = -30 \text{ (deg)}$$

Exit angle from the lower complex pole is $+30$ (deg).



3. Sketch the root locus diagram for the parameter K for the closed loop system shown in the diagram.



1) Characteristic Equation:
$$1 + GH(s) = 1 + K \left[\underbrace{\frac{s+3}{s^2 + 2s + 2}}_{P(s)} \right] = 0$$

2) Zeros of $P(s)$: $s = -3$ ($n_z = 1$)

Poles of $P(s)$: $s = -1 \pm 1j$ ($n_p = 2$) \Rightarrow Number of branches = 2

Number of asymptotes: $n_A = n_p - n_z = 1$

3) Poles on the real axis: $-\infty < s \leq -3$. Poles **moving towards zero** at $s = -3$, and poles moving **towards ∞ along the negative real axis** which is the only asymptote.

4) Asymptotes: No need for calculations. Lone asymptote is at 180 degrees.

5) Break Points:
$$\frac{dP}{ds} = \frac{(1)(s^2 + 2s + 2) - (s+3)(2s+2)}{(s^2 + 2s + 2)^2} = 0 \Rightarrow -s^2 - 6s - 4 = 0$$

$\Rightarrow s = -0.764; -5.24$. The break point must be in the range $-\infty < s \leq -3$, so the break point for RL diagram is at $s = -5.24$.

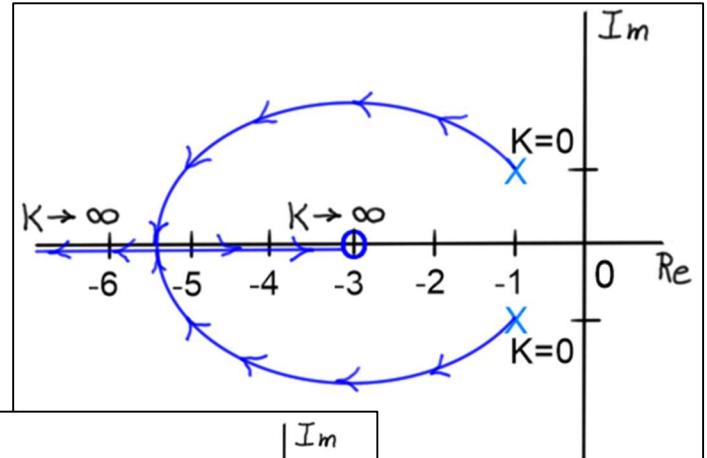
6) Exit angle from the upper complex pole:

$$\alpha_1 + \alpha_2 - \beta = 180$$

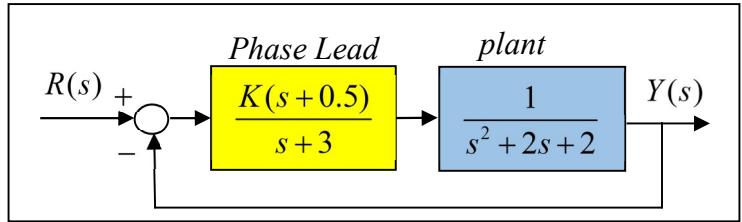
$$\alpha_1 + 90 - \tan^{-1}(1/2) = 180$$

$$\Rightarrow \alpha_1 = 116.6 \text{ (deg)}$$

Exit angle from the lower complex pole is -116.6 (deg) .



4. Sketch the root locus diagram for the parameter K for the closed loop system shown in the diagram.



1) Characteristic Equation:
$$1 + GH(s) = 1 + K \left[\frac{s + 0.5}{(s + 3)(s^2 + 2s + 2)} \right] = 0$$

2) Zeros of $P(s)$: $s = -0.5$ ($n_z = 1$)

Poles of $P(s)$: $s = -3, -1 \pm 1j$ ($n_p = 3$) \Rightarrow Number of branches = 3

Number of asymptotes: $n_A = n_p - n_z = 2$

3) Poles on the real axis: $-3 \leq s \leq -0.5$

Poles moving away from pole at $s = -3$, and poles moving towards the zero at $s = -0.5$.

4) Asymptotes:

$$\phi_A = \left(\frac{2m+1}{n_A} \right) 180 = \begin{cases} 90 \text{ (deg)} & (m=0) \\ 270 \text{ (deg)} & (m=1) \end{cases}, \quad \sigma_A = \frac{-3 + 2(-1) - (-0.5)}{n_A} = \frac{-4.5}{2} = -2.25$$

5) Break Points:

$$\frac{dP}{ds} = \frac{(1)(s+3)(s^2+2s+2) - (s+0.5)(3s^2+10s+8)}{(s+3)^2(s^2+2s+2)^2} = \frac{2s^3 + 6.5s^2 + 5s - 2}{(s+3)^2(s^2+2s+2)^2} = 0$$

$$\Rightarrow 2s^3 + 6.5s^2 + 5s - 2 = 0$$

$$s = 0.285; -1.77 \pm 0.62j$$

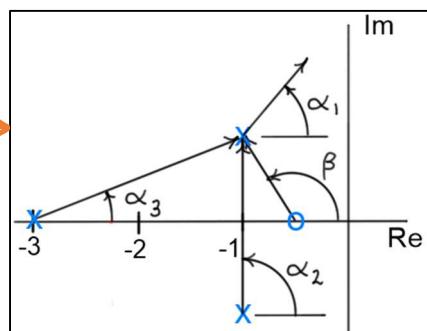
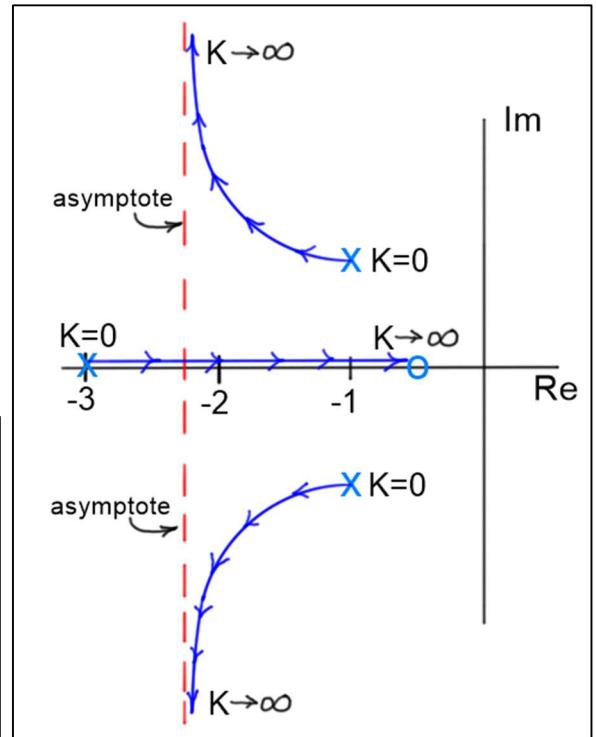
Break points on the RL diagram must be in the range $-3 \leq s \leq -0.5$, so there are **no break points**.

6) Exit angle from the upper complex pole:

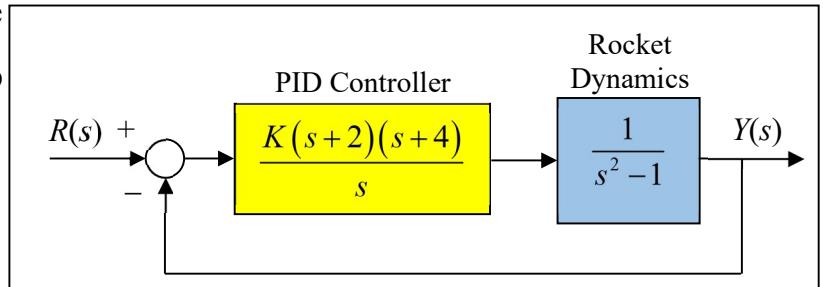
$$\alpha_1 + \alpha_2 + \alpha_3 - \beta = 180$$

$$\alpha_1 + 90 + \tan^{-1}(1/2) - (180 - \tan^{-1}(1/0.5)) = 180$$

$$\Rightarrow \alpha_1 = 180 \text{ (deg)}$$



5. Sketch the root locus diagram for the parameter K for the closed loop system shown in the diagram.



1) Characteristic Equation:
$$1 + GH(s) = 1 + K \left[\frac{(s+2)(s+4)}{s(s^2-1)} \right] = 0$$

2) Zeros of $P(s)$: $s = -2, -4$ ($n_z = 2$)

Poles of $P(s)$: $s = 0, \pm 1$ ($n_p = 3$) \Rightarrow Number of branches = 3

Number of asymptotes: $n_A = n_p - n_z = 1$

3) Poles on the real axis (3 segments): $-\infty < s < -4$, $-2 < s < -1$, and $0 < s < +1$

Poles move to the **right** from $s = 0$; poles move to the **left** from $s = +1$; poles move **left** from $s = -1$; poles move **towards** the zero at $s = -2$; poles move **towards** the zero at $s = -4$; poles move to infinity along the **negative real axis** which is the only asymptote.

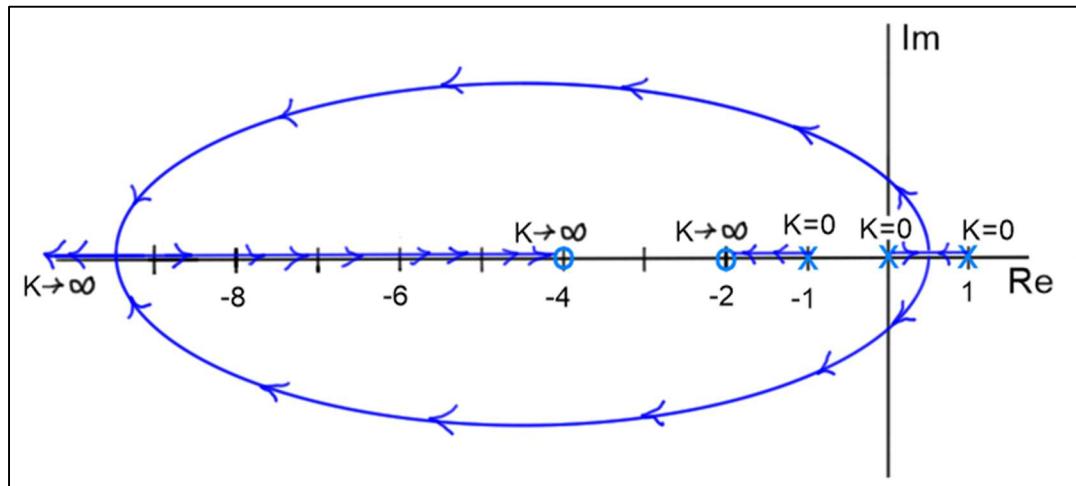
4) Asymptote: $\phi_A = 180$

5) Break Points:

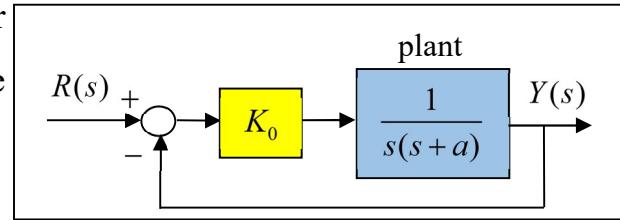
$$\frac{dP}{ds} = \frac{d}{ds} \left(\frac{(s+2)(s+4)}{s(s^2-1)} \right) = \frac{(2s+6)(s^3-s) - (s^2+6s+8)(3s^2-1)}{s^2(s^2-1)^2} = 0$$

$$\Rightarrow [s^4 + 12s^3 + 25s^2 - 8 = 0] \Rightarrow [s = -9.33, -2.495, -0.68, 0.5054]$$

\Rightarrow break points on RL diagram at $s = -9.33, 0.5054$



6. Sketch the root locus diagram for the parameter a for the closed loop system shown in the diagram.



1) Characteristic Equation:
$$1 + GH(s) = 1 + \left[\frac{K_0}{s(s+a)} \right] = 0 \Rightarrow 1 + a \underbrace{\left[\frac{s}{s^2 + K_0} \right]}_{P(s)} = 0$$

In this case, some **algebraic manipulation** is required to put the characteristic equation in standard form.

2) Zeros of $P(s)$: $s = 0$ ($n_z = 1$)

Poles of $P(s)$: $s = \pm\sqrt{K_0} j$ ($n_p = 2$) \Rightarrow Number of branches = 2

Number of asymptotes: $n_A = n_p - n_z = 1$

3) Poles on the real axis: $-\infty < s < 0$

Poles move **towards** the zero at $s = 0$, and poles move to infinity along the **negative real axis** which is the only asymptote.

4) Asymptotes: $\phi_A = 180$ (deg)

5) Break Points:
$$\frac{dP}{ds} = \frac{d}{ds} \left(\frac{s}{s^2 + K_0} \right) = \frac{(1)(s^2 + K_0) - s(2s)}{(s^2 + K_0)^2} = \frac{-s^2 + K_0}{(s^2 + K_0)^2} = 0$$

$$\Rightarrow s^2 - K_0 = 0 \Rightarrow s = \pm\sqrt{K_0}$$

\Rightarrow break point on the RL diagram at

$$s = -\sqrt{K_0}$$

