
 Kamman – Introductory Control Systems – Using MATLAB for Root Locus Analysis – page: 1/3

Introductory Control Systems
Using MATLAB for Root Locus Analysis

Reference: Dorf & Bishop, Modern Control Systems, Pearson/Prentice-Hall, 11th Ed., 2008.

 As an example of how to use MATLAB to perform a root locus analysis, consider design

problem DP6.4 of Dorf & Bishop. The block diagram of the closed-loop system is shown below.

The goal is to use MATLAB to draw a root locus diagram for the parameter K.

The characteristic equation of the closed-loop system is 1 () 0GH s  or 1 () 0KP s  .

Substituting the transfer functions from the block diagram into the characteristic equation gives

   2

2 3

4 2 6 8
1 1 0

(1)

s s s s
K K

s s s s

     
         

 The MATLAB commands that produce

the root locus diagram are:

In response to the “tf” command,

MATLAB provides the transfer function

in the command window.

The three branches of the diagram are shown in green, blue, and red. Note, however, that

MATLAB does not show the direction of the movement of the poles as K increases. It is

understood the movement is from the poles of ()P s to the zeros of ()P s . In this case, there are

Rocket
Dynamics

PID Controller

Y(s) R(s) +

 s^2 + 6 s + 8
sys = ---------------
 s^3 – s

Continuous-time transfer function.

num = [1,6,8];
den = [1, 0, -1, 0];

sys = tf(num,den)

rlocus(sys)
axis ('equal')
title('Root Locus Diagram for K (m=4)')

 Kamman – Introductory Control Systems – Using MATLAB for Root Locus Analysis – page: 2/3

three branches, but only two zeros so one of the branches must go to infinity along an asymptote.

As stated in previous notes, if there is only one asymptote, it is at 180 degrees. The “axis”

command ensures that the diagram is shown in its true shape.

Target Regions for Poles

o The damping ratios and settling times of

the poles are determined by their location

in the s-plane.

o To ensure a settling time less than sT , the

real parts of all the poles of the system

should be to the left of 4 sT .

o The damping ratio of each of the complex

poles is determined by drawing a vector

from the origin to the location of the pole

and measuring the angle  between this

vector and the negative real axis.

o The damping ratio is calculated as cos()  . For example, poles that lie below the

45 (deg)  line have damping ratios 0.707  .

Parameter Values Associated with Poles in the Target Region

 To find parameter values

associated with poles within the

target region, use the “rlocfind”

command in MATLAB. After

executing the “rlocfind” command,

click on a desirable pole location on

one of the branches of the root locus

diagram in the plot window.

MATLAB automatically picks the

point on the branch that is closest to

your selection.

X

 Kamman – Introductory Control Systems – Using MATLAB for Root Locus Analysis – page: 3/3

The MATLAB commands are:

Note the grid is not the usual rectangular grid but rather a polar grid which aligns with constant

values of damping ratio (radial lines) and frequency (concentric circles). In response to the user

clicking on the selected point, MATLAB places a “+” at the location of the associated poles, and

the following data is provided in the command window.

 So, in this case, for a K value of approximately 9.61, the closed-loop system has one real pole

at 1.8s   and a pair of complex conjugate poles at 3.90 5.23s j   . The complex poles have

a damping ratio of approximately 0.6  . The frequency associated with the real pole is 1.8

(rad/s), and the frequency associated with the complex poles is 6.52 (rad/s). The settling time

associated with the real pole is  
real pole

4 1.8 2.22 (sec)sT   , and the settling time associated

with the complex poles is  complex
poles

4 3.90 1.03 (sec)sT   .

grid

[k, poles] = rlocfind(sys)

selected point = -3.900473933649288 + 5.249262688362950i

k = 9.609310443185597

poles =

 -3.901567707687948 + 5.228747819083528i
 -3.901567707687948 - 5.228747819083528i
 -1.806175027809703 + 0.000000000000000i

